MA0301 ELEMENTARY DISCRETE MATHEMATICS SPRING 2017

1. Homework Set 11 - Solutions

Exercise 1. Grimaldi's book (5. ed., Exercises 11.1, page 519): solve Ex. 7
Solution 1. a)

b) $\{(g, d),(d, e),(e, a)\} \quad\{(g, b),(b, c),(c, d),(d, e),(e, a)\}$
c) Two segments need to be blocked/deleted: one of $\{(b, c),(c, d)\}$ and one of $\{(b, f),(f, g),(g, d)\}$
d) no
e) Travel: $\{(c, d),(d, e),(e, a),(a, b),(b, f),(f, g)\}$
f) Travel: $\{(g, b),(b, f),(f, g),(g, d),(d, b),(b, c),(c, d),(d, e),(e, a),(a, b)\}$

Exercise 2. Grimaldi's book (5. ed., Exercises 11.1, page 520): solve Ex. 15
Solution 2. a_{n} denotes the number of closed $v-v$ walks of length n (=number of edges): $a_{1}=1$, $a_{2}=2$. For general $n>2$ we find $a_{n}=a_{n-1}+a_{n-2}$ corresponding respectively to walks with the last segment being either the loop $\{v, v\}$ or the edge $\{v, w\}$. Hence, $a_{n}=F_{n+1}$, the $\mathrm{n}+1$ st Fibonacci number.

Exercise 3. Grimaldi's book (5. ed., Exercises 11.1, page 520): solve Ex. 16
Solution 3. a) There are two more:

001011
b) 14
c) Catalan number many: $C_{n}=\frac{1}{n+1}\binom{2 n}{n}, n>0$

Exercise 4. Grimaldi's book (5. ed., Exercises 11.2, page 529): solve Ex. 6
Solution 4. You should find 11 loop-free undirected graphs with 4 vertices, which are nonisomorphic. Of those, 6 are connected.

Exercise 5. Grimaldi's book (5. ed., Exercises 11.2, page 529): solve Ex. 12
Solution 5. a) First, check that the graph K_{n} has $\binom{n}{2}$ edges. Then, for G with e_{1} edges and \bar{G} with e_{2} edges, we have by definition that $e_{1}+e_{2}=\binom{n}{2}$. If G is self-complementary we have $e_{1}=e_{2}$ from which we deduce that $2 e_{1}=\binom{n}{2}$. Hence, G must have $e_{1}=n(n-1) / 4$ edges.

c) Part a) implies for a self-complementary graph G that 4 must divide $n(n-1)$. Hence, either n or $n-1$ is odd (and the other even). So, if n is even (and $n-1$ odd), then 4 divides n and we must have $n=4 k$ for k a positive integer. If $n-1$ is even (and n odd), then 4 divides $n-1$ and we must have $n=4 k+1$ for k a positive integer.

