MA0301 ELEMENTARY DISCRETE MATHEMATICS SPRING 2017

1. Homework Set 11 – Solutions

Exercise 1. Grimaldi's book (5. ed., Exercises 11.1, page 519): solve Ex. 7

Solution 1. a)

- b) $\{(g,d), (d,e), (e,a)\} = \{(g,b), (b,c), (c,d), (d,e), (e,a)\}$
- c) Two segments need to be blocked/deleted: one of $\{(b, c), (c, d)\}$ and one of $\{(b, f), (f, g), (g, d)\}$
- d) no
- e) Travel: $\{(c,d), (d,e), (e,a), (a,b), (b,f), (f,g)\}$
- f) Travel: $\{(g,b), (b,f), (f,g), (g,d), (d,b), (b,c), (c,d), (d,e), (e,a), (a,b)\}$

Exercise 2. Grimaldi's book (5. ed., Exercises 11.1, page 520): solve Ex. 15

Solution 2. a_n denotes the number of closed v - v walks of length n (=number of edges): $a_1 = 1$, $a_2 = 2$. For general n > 2 we find $a_n = a_{n-1} + a_{n-2}$ corresponding respectively to walks with the last segment being either the loop $\{v, v\}$ or the edge $\{v, w\}$. Hence, $a_n = F_{n+1}$, the n+1st Fibonacci number.

Exercise 3. Grimaldi's book (5. ed., Exercises 11.1, page 520): solve Ex. 16

Solution 3. a) There are two more:

Date: May 9, 2017.

- b) 14
- c) Catalan number many: $C_n = \frac{1}{n+1} \binom{2n}{n}, n > 0$

Exercise 4. Grimaldi's book (5. ed., Exercises 11.2, page 529): solve Ex. 6

<u>Solution</u> 4. You should find 11 loop-free undirected graphs with 4 vertices, which are nonisomorphic. Of those, 6 are connected.

Exercise 5. Grimaldi's book (5. ed., Exercises 11.2, page 529): solve Ex. 12

Solution 5. a) First, check that the graph K_n has $\binom{n}{2}$ edges. Then, for G with e_1 edges and \overline{G} with e_2 edges, we have by definition that $e_1 + e_2 = \binom{n}{2}$. If G is self-complementary we have $e_1 = e_2$ from which we deduce that $2e_1 = \binom{n}{2}$. Hence, G must have $e_1 = n(n-1)/4$ edges.

b)
$$G_1 = |$$
 | $G_2 = |$ | |
• - • • • - • •

c) Part a) implies for a self-complementary graph G that 4 must divide n(n-1). Hence, either n or n-1 is odd (and the other even). So, if n is even (and n-1 odd), then 4 divides n and we must have n = 4k for k a positive integer. If n-1 is even (and n odd), then 4 divides n-1 and we must have n = 4k + 1 for k a positive integer.