Exercises on Trigonometric Functions

October 2, 2014

- 1. Compute the following quantities.
 - (a) $\sin(\pi/3)$
 - (b) $\cos(\pi/4)$
 - (c) $\tan(\pi/6)$
 - (d) $\sin\left(\frac{3\pi}{2}\right)$
 - (e) $\cos\left(\frac{5\pi}{8}\right)$
 - (f) $\tan\left(\frac{7\pi}{8}\right)$
 - (g) $\sin\left(\frac{2\pi}{3}\right)$
 - (h) $\cos\left(-\frac{3\pi}{2}\right)$
 - (i) $\tan(-6\pi)$
 - (j) $\sin\left(-\frac{47\pi}{2}\right)$
- 2. Show that

$$\frac{d}{dx}(\tan(x)) = \frac{1}{\cos^2(x)}$$

by completing the following steps:

(a) Explain why we can write

$$\tan(x) = \frac{\sin(x)}{\cos(x)}.$$

- (b) Apply the quotient rule to the fraction obtained in part (a).
- (c) Use the fact that, for any x, we always have $\sin^2(x) + \cos^2(x) = 1$ to simplify the result from part (b).
- 3. Compute the derivatives of the following functions.
 - (a) $x^5 + 2\sin x$
 - (b) $x \cos x$
 - (c) $\tan(x^2 1)$
 - (d) ln(2 + cos(x))
 - (e) $\sin(\sin(x))$
 - (f) $\frac{\sin(x)}{x}$
 - (g) $\frac{\sin(\ln(x))}{x}$
- 4. Compute the following indefinite integrals.

(a)
$$\int x + \sin(x) \ dx$$

(b)
$$\int x^5 + \frac{5}{x^5} + \frac{2}{\cos^2(x)} dx$$

(c)
$$\int \frac{1}{4}x^3 + 10e^x + 2\sin(x) dx$$

(d)
$$\int \sqrt[3]{x} - 2xe^{x^2} + 4\sin(2x) dx$$

(e)
$$\int \cos(2x) - \frac{2x}{\cos^2(x^2)} dx$$

(f)
$$\int \sin(x)e^{\cos(x)} - x^3\cos(x^4) dx$$

(g)
$$\int xe^x - 2x\cos(x) \ dx$$

(h)
$$\int \frac{1}{x} + x^2 e^x + x \sin(2x) dx$$

(i)
$$\int x \ln(x) + 2x^2 \cos(2x) \ dx$$

5. Compute the following definite integrals.

(a)
$$\int_0^{\pi/2} x + \sin(x) \ dx$$

(b)
$$\int_{\pi/2}^{3\pi/2} \cos(x) e^{\sin(x)} dx$$

(c)
$$\int_0^\pi x \sin(x) \ dx$$