Norwegian University of Science and Technology
Institutt for matematiske fag

MA0002 Brukerkurs i

Matematikk B
Vår 2023

Solutions to exercise set 11

1 Use the properties for limits to compute the following limits
a)

$$
\begin{aligned}
& \lim _{\left(x_{1}, x_{2}\right) \rightarrow(-1,1)}\left(2 x_{1} x_{2}+3 x_{1}^{2}\right) \\
\lim _{\left(x_{1}, x_{2}\right) \rightarrow(-1,1)}\left(2 x_{1} x_{2}+3 x_{1}^{2}\right) & =\lim _{\left(x_{1}, x_{2}\right) \rightarrow(-1,1)} 2 x_{1} x_{2}+\lim _{\left(x_{1}, x_{2}\right) \rightarrow(-1,1)} 3 x_{1}^{2}=-2+3=1
\end{aligned}
$$

b)

$$
\lim _{\left(x_{1}, x_{2}\right) \rightarrow(1,1)} \frac{x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}}
$$

Since

$$
\lim _{\left(x_{1}, x_{2}\right) \rightarrow(1,1)}\left(x_{1}^{2}+x_{2}^{2}\right) \neq 0
$$

we can compute

$$
\lim _{\left(x_{1}, x_{2}\right) \rightarrow(1,1)} \frac{x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}}=\frac{\lim _{\left(x_{1}, x_{2}\right) \rightarrow(1,1)} x_{1} x_{2}}{\lim _{\left(x_{1}, x_{2}\right) \rightarrow(1,1)}\left(x_{1}^{2}+x_{2}^{2}\right)}=\frac{1}{2}
$$

2 Show that

$$
\lim _{\left(x_{1}, x_{2}\right) \rightarrow(0,0)} \frac{3 x_{1}^{2}-x_{2}^{2}}{x_{1}^{2}+x_{2}^{2}}
$$

does not exist by computing the limit along the positive x_{1}-axis and the positive x_{2}-axis.

We first compute along the x-axis

$$
\lim _{\left(x_{1}, 0\right) \rightarrow(0,0)} \frac{3 x_{1}^{2}}{x_{1}^{2}}=\lim _{\left(x_{1}, 0\right) \rightarrow(0,0)} 3=3
$$

Then we compute along the x_{2}-axis

$$
\lim _{\left(0, x_{2}\right) \rightarrow(0,0)} \frac{-x_{2}^{2}}{x_{2}^{2}}=\lim _{\left(0, x_{2}\right) \rightarrow(0,0)}-1=-1
$$

Since these are not equal, the limit does not exists.

3 a) Compute

$$
\lim _{\left(x_{1}, x_{2}\right) \rightarrow(0,0)} \frac{3 x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}}
$$

along the lines $x_{2}=m x_{1}$, for $m \neq 0$. What can you conclude?
When we compute the limit along the line $x_{2}=m x_{1}$, it is the same as computing

$$
\lim _{x_{1} \rightarrow 0} \frac{3 x_{1}\left(m x_{1}\right)}{x_{1}^{2}+\left(m x_{1}\right)^{2}}=\left(\lim _{x_{1} \rightarrow 0} \frac{x_{1}^{2}}{x_{1}^{2}}\right)\left(\lim _{x_{1} \rightarrow 0} \frac{3 m}{1+m^{2}}\right)=1 \cdot \frac{3 m}{1+m^{2}}=\frac{3 m}{1+m^{2}}
$$

If we set in for $m=1$ we get $3 / 2$, and if we set in for $m=2$ we get $6 / 5$, which means we can conclude that the limit does not exsist.
b) Show that

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\frac{3 x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}} & \text { for }\left(x_{1}, x_{2}\right) \neq(0,0) \\ 0 & \text { for }\left(x_{1}, x_{2}\right)=(0,0)\end{cases}
$$

is discontinuous at $(0,0)$.
From a, we see that the limit does not exsist at the point $(0,0)$, which means that f is not continuous.

4 Find $\partial f / \partial x_{1}$ and $\partial f / \partial x$, for for the functions
a) $f\left(x_{1}, x_{2}\right)=2 x_{1} \sqrt{x_{2}}-\frac{3}{x_{1} x_{2}^{2}}$

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{1}}=2 \sqrt{x_{2}}+\frac{3}{x_{1}^{2} x_{2}^{2}} \\
& \frac{\partial f}{\partial x_{2}}=\frac{x_{1}}{\sqrt{x_{2}}}+\frac{6}{x_{1} x_{2}^{3}}
\end{aligned}
$$

b) $f\left(x_{1}, x_{2}\right)=e^{-x_{1}^{2}} \cos \left(x_{1}^{2}-x_{2}^{2}\right)$

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{1}}=-2 x_{1} e^{-x_{2}^{2}} \sin \left(x_{1}^{2}-x_{2}^{2}\right) \\
& \frac{\partial f}{\partial x_{2}}=-2 x_{2} e^{-x_{2}^{2}} \cos \left(x_{1}^{2}-x_{2}^{2}\right)+2 x_{2} e^{-x_{2}^{2}} \sin \left(x_{1}^{2}-x_{2}^{2}\right)
\end{aligned}
$$

5 Let

$$
f\left(x_{1}, x_{2}\right)=2 x_{1}^{3}-3 x_{2} x_{1} .
$$

Compute $f_{x_{1}}(1,2)$ and $f_{x_{2}}(1,2)$, and give a representation of the tangent plane of f at $(1,2)$.

$$
\begin{aligned}
& f_{x_{1}}(1,2)=\left(6 \cdot 1^{2}-6\right)=0 \\
& f_{x_{2}}(1,2)=-3 \cdot 1=-3
\end{aligned}
$$

To find the tangent plane, we also need to compute $f(1,2)=-4$. So we have the tangent plane

$$
L\left(x_{1}, x_{2}\right)=-4-3\left(x_{2}+3\right)=-4-3 x_{2}-3
$$

6 Let

$$
\mathbf{f}\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}
3 x_{1}-x_{2}^{2} \\
4 x_{2}
\end{array}\right] .
$$

Find the linear approximation of \mathbf{f} at $(-1,-2)$.
To compute the linear approximation of \mathbf{f} we first compute the following

$$
\begin{gathered}
\mathbf{f}(-1,-2)=\left[\begin{array}{l}
-7 \\
-8
\end{array}\right], \\
(D \mathbf{f})\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
3 & -2 x_{2} \\
0 & 4
\end{array}\right], \\
(D \mathbf{f})(-1,-2)=\left[\begin{array}{ll}
3 & 4 \\
0 & 4
\end{array}\right]
\end{gathered}
$$

Then the linear approximation of \mathbf{f} is

$$
\mathbf{L}\left(x_{1}, x_{2}\right)=\left[\begin{array}{l}
-7 \\
-8
\end{array}\right]+\left[\begin{array}{ll}
3 & 4 \\
0 & 4
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1}+1 \\
x_{2}+2
\end{array}\right]=\left[\begin{array}{c}
3 x_{1}+4 x_{2}+4 \\
4 x_{2}
\end{array}\right] .
$$

