Norwegian University of Science and Technology
Institutt for matematiske fag

MA0002 Brukerkurs i

Matematikk B
Vår 2023

Exercise set 11

1 Use the properties for limits to compute the following limits
a)

$$
\lim _{\left(x_{1}, x_{2}\right) \rightarrow(-1,1)}\left(2 x_{1} x_{2}+3 x_{1}^{2}\right)
$$

b)

$$
\lim _{\left(x_{1}, x_{2}\right) \rightarrow(1,1)} \frac{x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}}
$$

2 Show that

$$
\lim _{\left(x_{1}, x_{2}\right) \rightarrow(0,0)} \frac{3 x_{1}^{2}-x_{2}^{2}}{x_{1}^{2}+x_{2}^{2}}
$$

does not exist by computing the limit along the positive x_{1}-axis and the positive x_{2}-axis.

3 a) Compute

$$
\lim _{\left(x_{1}, x_{2}\right) \rightarrow(0,0)} \frac{3 x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}}
$$

along the lines $x_{2}=m x_{1}$, for $m \neq 0$. What can you conclude?
b) Show that

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\frac{3 x_{1} x_{2}}{x_{1}^{2}+x_{2}^{3}} & \text { for }\left(x_{1}, x_{2}\right) \neq(0,0) \\ 0 & \text { for }\left(x_{1}, x_{2}\right)=(0,0)\end{cases}
$$

is discontinuous at $(0,0)$.

4 Find $\partial f / \partial x_{1}$ and $\partial f / \partial x$, for for the functions
a) $f\left(x_{1}, x_{2}\right)=2 x_{1} \sqrt{x_{2}}-\frac{3}{x_{1} x_{2}^{2}}$
b) $f\left(x_{1}, x_{2}\right)=e^{-x_{1}^{2}} \cos \left(x_{1}^{2}-x_{2}^{2}\right)$

5 Let

$$
f\left(x_{1}, x_{2}\right)=2 x_{1}^{3}-3 x_{2} x_{1}
$$

Compute $f_{x_{1}}(1,2)$ and $f_{x_{2}}(1,2)$, and give a representation of the tangent plane of f at $(1,2)$.

6 Let

$$
\mathbf{f}\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}
3 x_{1}-x_{2}^{2} \\
4 x_{2}
\end{array}\right]
$$

Find the linear approximation of \mathbf{f} at $(-1,-2)$.

