Linear Algebra
 Linear Systems

Elisabeth Köbis, elisabeth.kobis@ntnu.no

Linear Systems

We already know how to solve a 2×2 linear system of the form

$$
\begin{aligned}
a_{1} x+b_{1} y & =c_{1} \\
a_{2} x+b_{2} y & =c_{2} .
\end{aligned}
$$

Linear Systems

Example 1

$$
\begin{aligned}
& 5 x+2 y=90 \\
& 3 x+4 y=96
\end{aligned}
$$

The first equation divided by 5 yields the system

$$
\begin{aligned}
x+\frac{2}{5} y & =18 \quad\left(\Longleftrightarrow 3 x+\frac{6}{5} y=54\right) \\
3 x+4 y & =96
\end{aligned}
$$

Linear Systems

The new form of the second equation is obtained by subtracting the first equation multiplied by 3 from the second equation:

$$
\begin{aligned}
x+\frac{2}{5} y & =18 \\
\frac{14}{5} y & =42 .
\end{aligned}
$$

This gives us $y=15$ and hence $x=12$. So, the system has a unique solution $(x, y)=(12,15)$.

Linear Systems

Example 2

$$
\begin{aligned}
& 2 x+y=1 \\
& 2 x+y=2 .
\end{aligned}
$$

This system has no solutions.

Linear Systems - Graphical Interpretation

Solving a linear 2×2 system has a graphical interpretation. Every equation of the form

$$
a x+b y=c \quad(a \neq 0 \text { or } b \neq 0)
$$

represents a line in the plane. Note that if $b \neq 0$, we have $a x+b y=c$ $\Longleftrightarrow y=-\frac{a}{b} x+\frac{c}{b}$. When we solve the system

$$
\begin{aligned}
& a_{1} x+b_{1} y=c_{1} \\
& a_{2} x+b_{2} y=c_{2}
\end{aligned}
$$

we find the points of intersection of two lines.

Linear Systems - Graphical Interpretation

When the lines have a unique point of intersection, the system has a unique solution, see Example 1:

Linear Systems - Graphical Interpretation

When the two lines are parallel, the system has no solution, see Example 2 :

Linear Systems - Graphical Interpretation

The two lines coincide precisely when the system has infinitely many solutions (i.e., when we actually have one equation instead of two). For example, consider the system

$$
\begin{array}{r}
2 x+y=4 \\
4 x+2 y=8 .
\end{array}
$$

Both equations yield $y=-2 x+4$.

Linear Systems

How do we find the infinitely many solutions?
We introduce a new parameter t. We set one of the variables of the system, for example x, to be equal to t :

$$
x=t, \quad t \in \mathbb{R}
$$

We then use the equations of the system to express the other variable, here y, in terms of t :

$$
2 x+y=4 \Longrightarrow y=4-2 x=4-2 t .
$$

The infinitely many solutions of the system have the form

$$
(x, y)=(t, 4-2 t), \quad t \in \mathbb{R} .
$$

What does this mean? For example, when $t=5$, the pair $(x, y)=(5,-6)$ is a solution. When $t=-1$, the pair $(x, y)=(-1,6)$ is another solution.

Linear Systems

We could also have set the other variable equal to $t: y=t$. Then $2 x+t=4$ gives $x=2-\frac{1}{2} t$ and thus, solutions have the form $\left(2-\frac{1}{2} t, t\right)$.

Linear Systems

More generally, an $m \times n$ system of linear equations (or $m \times n$ linear system) consists of m equations and n variables:

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} & =b_{2} \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

A system of the above form can be solved by means of the Gauss elimination process.

Gauss Elimination Process

In the Gauss elimination process, we are allowed to perform 3 operations:

1. multiply/divide a row by a scalar $a \neq 0$.
2. add a multiple of a row by $a \neq 0$ to another row.
3. interchange the position of rows.

Gauss Elimination Process

Example 1

Solve

$$
\begin{aligned}
3 x+5 y-z & =10 \\
2 x-y+3 z & =9 \\
4 x+2 y-3 z & =-1 .
\end{aligned}
$$

Solution:
We obtain Row 3 by subtracting 2 times Row 2 from Row 3 :

$$
\begin{aligned}
3 x+5 y-z & =10 \\
2 x-y+3 z & =9 \\
4 y-9 z & =-19 .
\end{aligned}
$$

Gauss Elimination Process

We obtain Row 1 by multiplying with 2 and we get Row 2 by multiplying with 3:

$$
\begin{aligned}
6 x+10 y-2 z & =20 \\
6 x-3 y+9 z & =27 \\
4 y-9 z & =-19 .
\end{aligned}
$$

Now we can subtract the first row from the second row, and we obtain the new Row 2 :

$$
\begin{aligned}
6 x+10 y-2 z & =20 \\
-13 y+11 z & =7 \\
4 y-9 z & =-19 .
\end{aligned}
$$

Gauss Elimination Process

To obtain Row 2, we multiply it by 4 . Moreover, multiplying Row 3 with 13 yields the new Row 3:

$$
\begin{aligned}
6 x+10 y-2 z & =20 \\
-52 y+44 z & =28 \\
52 y-117 z & =-247
\end{aligned}
$$

Adding Row 3 and Row 2 gives the new form of Row 3:

$$
\begin{aligned}
6 x+10 y-2 z & =20 \\
-52 y+44 z & =28 \\
-73 z & =-219
\end{aligned}
$$

This gives $z=3, y=2$ and $x=1$. Therefore, the system has a unique solution $(x, y, z)=(1,2,3)$.

Gauss Elimination Process

Example 2

Solve

$$
\begin{aligned}
2 x-y+z & =3 \\
4 x-4 y+3 z & =2 \\
2 x-3 y+2 z & =1 .
\end{aligned}
$$

Solution:
In order to get Row 3, we multiply it by 2 and subtract Row 2 :

$$
\begin{aligned}
2 x-y+z & =3 \\
4 x-4 y+3 z & =2 \\
-2 y+z & =0 .
\end{aligned}
$$

Gauss Elimination Process

To obtain Row 2, we subtract 2 times Row 1 from Row 2:

$$
\begin{aligned}
2 x-y+z & =3 \\
-2 y+z & =-4 \\
-2 y+z & =0 .
\end{aligned}
$$

Hence, the system has no solutions.

Gauss Elimination Process

Example 3

Solve

$$
\begin{aligned}
x-3 y+z & =4 \\
x-2 y+3 z & =6 \\
2 x-6 y+2 z & =8
\end{aligned}
$$

Solution:
We subtract the first row from the second row to obtain Row 2:

$$
\begin{aligned}
x-3 y+z & =4 \\
y+2 z & =2 \\
2 x-6 y+2 z & =8 .
\end{aligned}
$$

Gauss Elimination Process

We obtain the last row by subtracting 2 times Row 1 from Row 3:

$$
\begin{aligned}
x-3 y+z & =4 \\
y+2 z & =2 \\
0 z & =0 .
\end{aligned}
$$

We can see that whatever value z has, the last equation $0 \cdot z=0$ always holds true. This means that the system has infinitely many solutions (the variable z is "free"). We set $z=t, t \in \mathbb{R}$. We get from the second equation

$$
y+2 z=2 \quad \Longrightarrow \quad y+2 t=2 \quad \Longrightarrow \quad y=2-2 t, \quad t \in \mathbb{R} .
$$

The first equation then yields

$$
\begin{gathered}
x-3 y+z=4 \quad \Longrightarrow \quad x-3(2-2 t)+t=4 \\
\Longrightarrow \quad x-6+6 t+t=4 \quad \Longrightarrow \quad x=10-7 t, \quad t \in \mathbb{R} .
\end{gathered}
$$

Therefore, the system has infinitely many solutions of the form

$$
(x, y, z)=(10-7 t, 2-2 t, t), \quad t \in \mathbb{R}
$$

