Revision Lecture - Previous Exam (2021)

Elisabeth Köbis, elisabeth.kobis@ntnu.no

Question 1 A

Evaluate the integral

$$
\int_{0}^{1} \frac{x}{x^{2}+2} d x
$$

Solution: Substitution: $\quad u=x^{2}+2, \quad u^{\prime}=\frac{d u}{d x}=2 x$

$$
\begin{array}{rlrl}
\Rightarrow \int_{0}^{1} \frac{x}{x^{2}+2} d x & =\int_{2}^{3} \frac{x}{n} \frac{d u}{2 x} & & \Rightarrow \frac{d x}{d x=\frac{d u}{2 x}} \\
& =\frac{1}{2} \int_{2}^{3} \frac{1}{u} d u & & \\
& =\frac{1}{2}[\ln u]_{2}^{3} & & \\
& =\frac{1}{2}(\ln 3-\ln 2) \\
& =\frac{1}{2} \ln \frac{3}{2} & & \\
x=1 \Rightarrow u=2
\end{array}
$$

Question 1 B
We are given the following matrices:

$$
A=\left(\begin{array}{cc}
(2) & -1 \\
-7 & (3)
\end{array}\right), \quad B=\left(\begin{array}{cc}
-1 & 4 \\
2 & 10
\end{array}\right), \quad C=\left(\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right) .
$$

1. Which of the matrices A, B and C is invertible?
2. Calculate $B+A^{-1}$.
3. Given the vectors $b=\binom{-1}{2}$ and $c=\binom{1}{-2}$. Are b and c orthogonal?
4. $\operatorname{det} A=2 \cdot 3-(-1) \cdot(-7)=6-7=-1 \neq 0 \Rightarrow A$ in invertible
$\operatorname{det} B=(-1) \cdot 10-4 \cdot 2=-10-8=-18 \neq 0 \Rightarrow B$ in invertible
$\operatorname{det} C=1 \cdot 4-(-2) \cdot(-2)=4-4=0 \Longrightarrow C$ is not invertible.
5. $A^{-1}=\frac{1}{\operatorname{det} A} \cdot\left(\begin{array}{ll}3 & 1 \\ 7 & 2\end{array}\right)=\left(\begin{array}{ll}-3 & -1 \\ -7 & -2\end{array}\right)$
(directly by the formula for the inverse)
Or: $\quad A \cdot A^{-n}=I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

$$
c=2 \cdot(-3)-1
$$

3. $b^{\top} c=b \cdot c=-1 \cdot 1+2 \cdot(-2)=-5 \neq 0$
$\rightarrow b$ and c are not orthogonal.

$$
\begin{aligned}
& \left(\frac{2}{-7} \frac{-1}{3}\right) \cdot\left(\frac{a}{c} \frac{b}{d}\right)=\left(\begin{array}{ll}
\frac{1}{0} & \frac{0}{1}
\end{array}\right) \\
& \Rightarrow 2 \cdot a+(-1) \cdot c=1 \quad \Rightarrow c=2 a-1 \\
& {[2 \cdot b+(-1) \cdot d=0} \\
& \Rightarrow c=2 a-1 \\
& \Rightarrow-7 a+3(2 a-1)=0 \\
& -7 a+6 a-3=0 \\
& \Rightarrow a=-3 \\
& {\left[\begin{array}{l}
\rightarrow d=2 b \\
\rightarrow-7 b+3 \cdot 2 b=1 \\
\Rightarrow b=-1
\end{array}\right] \begin{array}{l}
d=2 \cdot(-1) \\
=-2
\end{array}} \\
& \Rightarrow A^{-1}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
-3 & -1 \\
-7 & -2
\end{array}\right) \\
& B+A^{-1}=\left(\frac{-1}{2} \frac{4}{10}\right)+\left(\frac{-3}{-7} \frac{-1}{-2}\right)=\left(\begin{array}{ll}
-4 & 3 \\
-5 & 8
\end{array}\right)
\end{aligned}
$$

Question 2

A group of biologists have observed lions in the jungle. They concluded that the number of individuals $N(t)$ at time $t>0$ is given by the differential equation

$$
\frac{d N(t)}{d t}=\frac{N(t)}{1000}(500-N(t))
$$

$\checkmark 1$. Find $N(t)$ given that the population is $N(0)=50$ at time $t=0$.
$\checkmark 2$. What does the differential equation say about the population's per capita growth rate? What is the carrying capacity of the population?
$\checkmark 3$. Find the equilibrium points of the population growth model described above and classify them according to their stability.
4. Some biologists from the group that studied the population of lions have suggested that the growth model described above is not realistic for the following reason: it does not take into account the fact that when the number $N(t)$ of lions is very small, the population will decline because of the lack of mates for reproduction. Can you suggest a variant of the given differential equation that takes into account the fact that when the population of lions is less than 40 then the population will decrease to 0 ?

1. We solve the DE $\frac{d N}{d t}=\frac{N}{1000}(500-N)$
separation of
varisele

$$
S \frac{d N}{N(500-N)}=\int \frac{1}{1000} d t
$$

$$
\begin{aligned}
& \text { Partial Fraction } \\
& \text { occomporition } \\
& \xrightarrow{\text { eecompoition }} \quad \int \frac{1}{500} \cdot\left(\frac{1}{N}+\frac{1}{500-N}\right) d N=\frac{1}{1000} \int d t \\
& \left.\Rightarrow \frac{1}{500}\left(S \frac{1}{N} d N+\int \frac{1}{500-N} d N\right)=\frac{1}{1000} \int d t \quad \right\rvert\, .500 \\
& \Rightarrow \quad \int \frac{1}{N} d N+\int \frac{1}{500-N} d N=\frac{1}{2} \int d t \\
& \Rightarrow \ln N+(-\ln (500-N))=\frac{1}{2} t+c \quad \text { (c: contant) } \\
& \Rightarrow \quad \ln \frac{N}{500-N}=\frac{1}{2} \epsilon+C \\
& \Rightarrow \quad \frac{N}{500-N}=e^{\frac{1}{2} t} \cdot \tilde{C} \cdot()^{-1} \\
& \frac{a}{b}=\frac{c}{d} \\
& \Rightarrow \frac{500-N}{N}=\frac{500}{N}-1=\frac{1}{e^{\frac{1}{2} t} \cdot \tilde{C}} \\
& \Rightarrow \frac{500}{N}=\frac{n}{e^{\frac{1}{2} t \sim}}+1=\frac{1+e^{\frac{1}{2} t} \tilde{c}}{e^{\frac{1}{2} t} \cdot \tilde{c}}
\end{aligned}
$$

$$
\Rightarrow N=\frac{500 \cdot e^{\frac{1}{2} t} \cdot \tilde{c}}{1+e^{\frac{1}{2} t} c}
$$

Initial condition: $N(0)=50$

$$
\begin{aligned}
& N(0)=50=\frac{500 \cdot e^{\frac{1}{2} \cdot 0} \cdot \tilde{c}}{1+e^{\frac{1}{2} \cdot 0} \cdot \tilde{c}}=\frac{500 \cdot \tilde{c}}{1+\tilde{c}} \\
& 50 \cdot(1+\tilde{c})=500 \tilde{c} \\
& 50+50 \tilde{c}=500 \widetilde{c} \Rightarrow 50=450 \tilde{c} \Rightarrow \tilde{c}=\frac{50}{450}=\frac{1}{9} \\
& \Rightarrow N(t)=\frac{500 \cdot e^{\frac{1}{2} t} \cdot \frac{1}{9}}{1+e^{\frac{1}{2} t} \cdot \frac{1}{9}} \\
&=\frac{500 e^{\frac{1}{2} t}}{9+e^{\frac{1}{2} t}} \\
&= \frac{500}{9 e^{-\frac{1}{2} t}+1}
\end{aligned}
$$

2. The per capita growth rate is $\frac{d N / d t}{N}=\frac{1}{1000}(500-N)$, so it depends linearly on N.
The bigger N is, the smaller the per capita growth rate The given $D E$ is a logistic $D E$, ie, of the form

$$
\frac{d N}{d t}=r N\left(1-\frac{N}{k}\right)
$$

with $r=\frac{1}{2}$ and $K=500$.
The carrying capacity of the population in 500 .
3. Set $g(N)=\frac{N}{1000} \cdot(500-N)=0$
$\Rightarrow N=0$ and $N=500$ are equilibria.

$$
\begin{aligned}
& \quad g^{\prime}(N)=\frac{1}{2}-\frac{N}{500} \\
& g^{\prime}(0)=\frac{1}{2}>0 \Rightarrow N=0 \text { is an unstable equ. } \\
& g^{\prime}(500)=\frac{1}{2}-1=-\frac{1}{2} 00 \Rightarrow N=500 \text { is a floc. stable equ. } \\
& \text { 4. } \frac{d N}{d t}=\frac{N}{1000}(N-40)(500-N)
\end{aligned}
$$

Question 3

The growth of a population of mice (krattspissmus) is described by the following Leslie matrix

$$
L=\left(\begin{array}{cc}
0 & 5 \\
0.8 & 0
\end{array}\right) .
$$

$\checkmark 1$. What information does the matrix L provide about the population? (age groups, offspring rate, survival rates)
$\checkmark 2$. Find the eigenvectors and eigenvalues of L.
$\checkmark 3$. What is the biological interpretation of the larger eigenvalue of L ?
4. What is the percentage of each age group in the population after a large number of reproduction sessions? Justify your answer.

1. The population of females comisto of two age grape, the D-year old and the 1-yea och.

$$
L=\left(\begin{array}{ll}
F_{0} & F_{1} \\
P_{0} & 0
\end{array}\right)
$$

F_{0} : afspting rate of 0 -year old $=0: 0$-year old do not produce off ping Each female 1-year old produces on average 5 otpping.
P_{0} : Survival rate of 0 -year $0(c h=0.8$: On average, 80% of the zers-yeal old survive.

$$
\text { 2. } \operatorname{det}\left(\lambda I_{2}-L\right)=\operatorname{det}\left(\begin{array}{cc}
\lambda & -5 \\
-0.8 & \lambda
\end{array}\right)=\lambda^{2}-5 \cdot 08=\lambda^{2}-4=0
$$

$\Rightarrow \lambda_{1}=2, \lambda_{2}=-2$ are the eigenvalues of L.

- eigenvector corr to $\lambda_{1}=2: L \cdot u=2 \cdot u$

$$
\Rightarrow\left(\begin{array}{cc}
0 & 5 \\
0.8 & 0
\end{array}\right) \cdot \underbrace{\binom{u_{1}}{u_{2}}}_{=u}=\binom{2 u_{1}}{2 u_{2}} \Rightarrow \begin{gathered}
5 \cdot u_{2}=2 u_{1} \\
0.8 u_{1}=2 u_{2}
\end{gathered}
$$

\Rightarrow This is one equation $5 u_{2}=2 u_{1}$.
For example, $u=\binom{5}{2}$ is an eigenvector corr. to r_{1}.
eigenvector corr. to $z_{2}=-2: L v=-2 \cdot v$

$$
\Rightarrow\left(\begin{array}{cc}
0 & 5 \\
0.8 & 0
\end{array}\right) \cdot\binom{v_{1}}{v_{2}}=\binom{-2 v_{1}}{-2 v_{2}} \Longrightarrow \begin{aligned}
& 5 v_{2}=-2 v_{1} \\
& 0.8 v_{1}=-2 v_{2}
\end{aligned}
$$

For example, $V=\binom{5}{-2}$ is an eigenvector corr. to c_{2}.
3. The large eigenvalue of L expenses the asymptotic growth rate of the population. After sufficiently many year, the population at time $t+1$ will be approximately two times (x_{1}-times) the population at time t.
4. We know that the eigenvector 4 which correrponch to the large eigenvalue is a stable age distribution. This mean that after a large number of reproduction session, the population of mice will constr of cepprox.

$$
\frac{5}{7} \approx 71 \% \text { of } 0 \text {-year old s }
$$

and $\frac{2}{7} \approx 29 \%$ of 1 - year $o l d$.

$$
\left(u=\binom{5}{2}\right)=\binom{u_{1}}{u_{2}}
$$

Question 4

Consider the function

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{3}
$$

defined on the closed and bounded domain

$$
D=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:-1 \leq x_{1} \leq 2,-1 \leq x_{2} \leq 2\right\}
$$

1. Find the global maximum and minimum of f on the domain D.
2. Does f have a local maximum or minimum at the point $(0,0)$? Does it have a local maximum or minimum at $\left(\frac{3}{2}, \frac{3}{2}\right)$?
3. Find the equation of the tangent plane of the graph of f at the point $(1,1)$.
4. Find the directional derivative of f at the point $(1,1)$ towards the direction of the vector $v=\binom{1}{2}$.

5. cook for local extrema of f in the interior of D :

$$
\nabla f\left(x_{1}, x_{2}\right)=\binom{2 x_{1}-2 x_{2}}{-2 x_{1}+3 x_{2}^{2}}=\binom{0}{0}
$$

$$
\Rightarrow \begin{aligned}
& x_{1}=x_{2} \\
& -2 x_{1}+3 x_{1}^{2}
\end{aligned}=x_{1}\left(-2+3 x_{1}\right)=0 \Rightarrow x_{1}=0 \text { or } x_{1}=\frac{2}{3}
$$

Hence, the critical points are (4,0) with $f(0,0)=0$ and $\left(\frac{2}{3}, \frac{2}{3}\right)$ with $f\left(\frac{2}{3}, \frac{2}{3}\right)=-\frac{4}{27}$
Now, we find the values of f on the boundary of D :

$$
\begin{aligned}
& A B-1 \leqslant x_{1} \leqslant 2, x_{2}=2 \\
& f\left(x_{1}, 2\right)=x_{1}^{2}-4 x_{1}+8=g\left(x_{1}\right) \\
& \Rightarrow g^{\prime}\left(x_{1}\right)=2 x_{1}-4=0 \Rightarrow x_{1}=2, f(2,2)=4 \\
& f(-1,2)=13
\end{aligned}
$$

$B C: x_{1}=2,-1 \leqslant x_{2} \leqslant 2$

$$
f\left(2, x_{2}\right)=4-4 x_{2}+x_{2}^{3}=g\left(x_{2}\right) \Rightarrow g^{\prime}\left(x_{2}\right)=-4+3 x_{2}^{2}=0
$$

$$
\begin{aligned}
& \Rightarrow x_{2}=\sqrt{\frac{4}{3}} \Rightarrow f\left(2, \sqrt{\frac{4}{3}}\right) \approx 0.9 \\
& \Rightarrow x_{2}=-\sqrt{\frac{4}{3}} \Rightarrow f\left(2,-\sqrt{\frac{4}{3}}\right) \approx 7.08 \\
& f(2,-1)=7
\end{aligned}
$$

$$
\text { -CD: }-1 \leqslant x_{1} \leqslant 2, \quad x_{2}=-1
$$

$$
f\left(x_{1},-1\right)=x_{1}^{2}+2 x_{n}-1=g\left(x_{1}\right)
$$

$$
\Rightarrow g^{\prime}\left(x_{1}\right)=2 x_{1}+2 \Rightarrow x_{1}=-1 \quad \Rightarrow f(1,-1)=\ldots
$$

$$
f(-1,-1)=-2
$$

- DA: $x_{1}=-1,-1 \leqslant x_{2} \leqslant 2$

$$
\begin{aligned}
& \text { DA: } x_{1}=-1,-1 \leq x_{2} \leq x_{2}^{3}=g\left(x_{2}\right) \\
& f\left(-1, x_{2}\right)=1+2 x_{2}+x_{2}^{2} \Rightarrow \text { no real solution } \\
& \Rightarrow g^{\prime}\left(x_{2}\right)=2+3 x_{2}^{2}=0 \Rightarrow \\
& f(-1,2)=13
\end{aligned}
$$

\Rightarrow Comparing all values on the boundary of D as well a the values of f at the critical points in the interior of D given:
$(-1,-1)$ with $f(-1,-1)=-2$ is a global min.
$(-1,2)$ with $f(-1,2)=13$ is a global max.

