Global Minima and Maxima

Elisabeth Köbis, elisabeth.kobis@ntnu.no

Some Definitions

Let $D \subseteq \mathbb{R}^{2}$ be a subset of the plane. The point $\left(\bar{x}_{1}, \bar{x}_{2}\right) \in D$ is called an interior point of D if there exists some $R>0$ s.t. $B_{R}\left(\bar{x}_{1}, \bar{x}_{2}\right) \subseteq D$. The set $D \subseteq \mathbb{R}^{2}$ is called open if all its points are interior points.
Examples:

- $B_{1}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2}<1\right\}$
- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: 0<x_{1}<1,0<x_{2}<1\right\}$.

The set $D \subseteq \mathbb{R}^{2}$ is called closed if the complement $\mathbb{R}^{2} \backslash D$ is open. The set $D \subseteq \mathbb{R}$ is called bounded if there exists some $R>0$ s.t. D is contained in the disc with center $(0,0)$ and radius R.

Existence of Global Minima and Maxima

Theorem
Let $D \subseteq \mathbb{R}^{2}$ be a closed and bounded subset of the plane and let $f: D \rightarrow \mathbb{R}$ be a continuous function. Then f has a global minimum and a global maximum.

How can find global minima and maxima of a function f ?

- First we find local extrema of f in the interior of D. If f has a local extremum on (\bar{x}_{1}, \bar{x}_{2}), then $\nabla f\left(\bar{x}_{1}, \bar{x}_{2}\right)=0$.
- We find all values of f on the boundary of D.
- The global minima and maxima of f (if they exist) will necessarily be among the values that we found in the previous two steps.

Example

Find the local and global extrema of $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-3 x_{2}+x_{2}^{2}$, where $-1 \leq x_{1} \leq 1,0 \leq x_{2} \leq 2$.
f is continuous and defined on a closed and bounded set, so f will have a global minimum and maximum on D. First we check for any extrema of f in the interior of D.

$$
\begin{aligned}
& f_{x_{1}}\left(x_{1}, x_{2}\right)=2 x_{1} \\
& f_{x_{2}}\left(x_{1}, x_{2}\right)=-3+2 x_{2} .
\end{aligned}
$$

Setting the gradient of f to zero (i.e., $\nabla f\left(x_{1}, x_{2}\right)=0$) leads to

$$
\begin{aligned}
2 x_{1} & =0 \\
-3+2 x_{2} & =0,
\end{aligned}
$$

which gives $x_{1}=0$ and $x_{2}=\frac{3}{2}$. The function value at this point is

$$
f\left(0, \frac{3}{2}\right)=0-3 \cdot \frac{3}{2}+\frac{9}{4}=-\frac{9}{4} .
$$

Example (cont.)

Now we find the values of f on the boundary of the domain.

- On $D C$: $x_{2}=0$ and $-1 \leq x_{1} \leq 1 . f$ has the form $f\left(x_{1}, 0\right)=x_{1}^{2}$, $-1 \leq x_{1} \leq 1$. At the points on $(1,0)$ and $(-1,0)$ on $D C$, the function value is 1 .
- On $C B: x_{1}=1$ and $0 \leq x_{2} \leq 2$. f has the form $f\left(1, x_{2}\right)=1-3 x_{2}+x_{2}^{2}=g\left(x_{2}\right)$.

$$
g^{\prime}\left(x_{2}\right)=2 x_{2}-3=0 \quad \Longrightarrow \quad x_{2}=\frac{3}{2} .
$$

So, $\left(1, \frac{3}{2}\right)$ with $f\left(1, \frac{3}{2}\right)=-\frac{5}{4}$ is a candidate for a global extremum.

Example (cont.)

- On $A B: x_{2}=2$ and $-1 \leq x_{1} \leq 1$. f has the form $f\left(x_{1}, 2\right)=x_{1}^{2}-2=g\left(x_{2}\right)$. Then $g^{\prime}\left(x_{2}\right)=2 x_{1}=0$ yields $x_{2}=0$ and thus $(0,2)$ is a candidate for an extremum. Other candidates are the endpoints $(-1,2)$ with $f(-1,2)=-1$ and $(1,2)$ with $f(1,2)=-1$.
- On $A D: x_{1}=-1$ and $0 \leq x_{2} \leq 2$. f has the form $f\left(-1, x_{2}\right)=1-3 x_{2}+x_{2}^{2}$ (the same as on $B C$). Thus we have the point $\left(-1, \frac{3}{2}\right)$ with $f\left(-1, \frac{3}{2}\right)=-\frac{5}{4}$. Other candidates are the endpoints $(-1,0)$ with $f(-1,0)=1$ and $(-1,2)$ with $f(-1,2)=-1$.
f has a global minimum at $\left(0, \frac{3}{2}\right)$ with $f\left(0, \frac{3}{2}\right)=-\frac{9}{4}$.
f has a global maximum at $(-1,0)$ and $(1,0)$ with $f(1,0)=f(1,0)=1$.

Example

Find the global extrema of $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-2 x_{1}+4$ on the disc $D=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2} \leq 4\right\}$.
D is a closed and bounded set and f is continuous on D, so f will have a global minimum and maximum on D. First we check for any extrema of f in the interior of D.

$$
\begin{aligned}
& f_{x_{1}}\left(x_{1}, x_{2}\right)=2 x_{1}-2 \\
& f_{x_{2}}\left(x_{1}, x_{2}\right)=2 x_{2} .
\end{aligned}
$$

Setting the gradient of f to zero (i.e., $\nabla f\left(x_{1}, x_{2}\right)=0$) leads to

$$
\begin{aligned}
2 x_{1}-2 & =0 \\
2 x_{2} & =0,
\end{aligned}
$$

which gives $x_{1}=1$ and $x_{2}=0$. The function value at this point is

$$
f(1,0)=1^{2}-2+4=3 .
$$

Example (cont.)

We now find the values of f on the boundary of D, which is the circle $x_{1}^{2}+x_{2}^{2}=4$. We find a parametrisation of the points on the boundary of D : Points x_{1}, x_{2} with $x_{1}^{2}+x_{2}^{2}=4$ have coordinates of the form

$$
\begin{aligned}
& x_{1}=2 \cos (\theta), \quad 0 \leq \theta<2 \pi \\
& x_{2}=2 \sin (\theta)
\end{aligned}
$$

Thus, on the boundary of D, we have

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =f(2 \cos (\theta), 2 \sin (\theta)) \\
& =\underbrace{4(\cos (\theta))^{2}+4(\sin (\theta))^{2}}_{(\cos (\theta))^{2}+(\sin (\theta))^{2}=1}-4 \cos (\theta)+4 \\
& =8-4 \cos (\theta) \\
& =4(2-\cos (\theta)) \\
& =g(\theta), 0 \leq \theta<2 \pi .
\end{aligned}
$$

$g(\theta)$ is maximum when

$$
\cos (\theta)=-1 \quad \Longleftrightarrow \quad \theta=\pi
$$

and then $g(\pi)=12$.

Example (cont.)

$g(\theta)$ is minimum when

$$
\cos (\theta)=1 \quad \Longleftrightarrow \quad \theta=0,
$$

and then $g(0)=4$.
f has a global min. at $(1,0)$ with $f(1,0)=3$, and f has a global max. at $(-2,0)$ with $f(-2,0)=12$.

Example

Find three nonnegative numbers whose sum is equal to 90 such that their product is maximum.

Let $x_{1}, x_{2}, x_{3} \geq 0$ be the three nonnegative numbers. Because their sum is equal to 90 , we write

$$
x_{1}+x_{2}+x_{3}=90 \quad \Longrightarrow \quad x_{3}=90-x_{1}-x_{2}
$$

Their product is

$$
x_{1} x_{2} x_{3}=x_{1} x_{2}\left(90-x_{1}-x_{2}\right)
$$

We need to maximize the function

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}\left(90-x_{1}-x_{2}\right) \quad\left(=90 x_{1} x_{2}-x_{1}^{2} x_{2}-x_{1} x_{2}^{2}\right)
$$

with $x_{1} \geq 0, x_{2} \geq 0$ and

$$
x_{3} \geq 0 \quad \Longrightarrow \quad 90-x_{1}-x_{2} \geq 0 \quad \Longrightarrow \quad x_{1}+x_{2} \leq 90
$$

Example (cont.)

We find potential global extrema in the interior of f :

$$
\nabla f\left(x_{1}, x_{2}\right)=\binom{f_{x_{1}}\left(x_{1}, x_{2}\right)}{f_{x_{2}}\left(x_{1}, x_{2}\right)}=\binom{90 x_{2}-2 x_{1} x_{2}-x_{2}^{2}}{90 x_{1}-x_{1}^{2}-2 x_{1} x_{2}} .
$$

Setting $\nabla f\left(x_{1}, x_{2}\right)=0$ gives

$$
\begin{aligned}
& 90 x_{2}-2 x_{1} x_{2}-x_{2}^{2}=x_{2}\left(90-2 x_{1}-x_{2}\right)=0 \\
& 90 x_{1}-x_{1}^{2}-2 x_{1} x_{2}=x_{1}\left(90-x_{1}-2 x_{2}\right)=0 .
\end{aligned}
$$

Since we are looking for potential extrema in the interior, we must have $x_{1}, x_{2}>0$. Then

$$
\begin{aligned}
& 90-2 x_{1}-x_{2}=0 \quad \Longrightarrow \quad 2 x_{1}+x_{2}=90 \\
& 90-x_{1}-2 x_{2}=0 \quad \Longrightarrow \quad x_{1}+2 x_{2}=90
\end{aligned}
$$

with solution $\left(x_{1}, x_{2}\right)=(30,30)$. We have

$$
f(30,30)=30 \cdot 30 \cdot(90-30-30)=27000 .
$$

On any point $\left(x_{1}, x_{2}\right)$ on the boundary of the domain of f, we have $f\left(x_{1}, x_{2}\right)=0$. Hence, f has a global max. at $(30,30)$ (and $\left.x_{3}=30\right)$.

