Gradient of a Function of Several Variables & Directional Derivative

Elisabeth Köbis, elisabeth.kobis@ntnu.no

Gradient of a Function

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function which has partial derivatives of first order. We define the **gradient** of f at (x_1, x_2) to be the vector

$$\nabla f(x_1, x_2) = \begin{pmatrix} f_{x_1}(x_1, x_2) \\ f_{x_2}(x_1, x_2) \end{pmatrix}.$$

Example

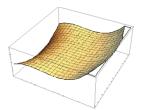
Let $f(x_1, x_2) = x_1^2 + x_1 x_2$. Then $f_{x_1} = 2x_1 + x_2$, $f_{x_2} = x_1$. Hence,

$$\nabla f(x_1, x_2) = \begin{pmatrix} 2x_1 + x_2 \\ x_1 \end{pmatrix}.$$

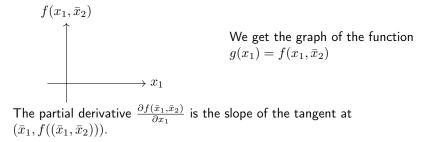
For example,

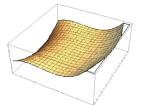
$$\nabla f(1,-1) = \begin{pmatrix} 1\\1 \end{pmatrix}.$$

Recall the geometric interpretation of $\frac{\partial f(\bar{x}_1, \bar{x}_2)}{\partial x_1}$ and $\frac{\partial f(\bar{x}_1, \bar{x}_2)}{\partial x_2}$.

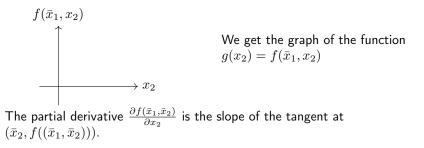


We keep x_2 constant and equal to \bar{x}_2 . We intersect the graph of f with the plane $x_2 = \bar{x}_2$.

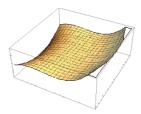




We keep x_1 constant and equal to \bar{x}_1 . We intersect the graph of f with the plane $x_1 = \bar{x}_1$.

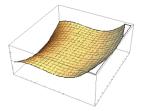


What if we want to find the rate of change of $f(x_1, x_2)$ as (x_1, x_2) changes along another direction?



Let $u = (u_1, u_2)$ be a unit vector (i.e., $|u| = \sqrt{u_1^2 + u_2^2 = 1}$). The **directional derivative** of $f(x_1, x_2)$ at the point (\bar{x}_1, \bar{x}_2) in the direction of the unit vector $u = (u_1, u_2)$ is

$$D_u f(\bar{x}_1, \bar{x}_2) = \nabla f(\bar{x}_1, \bar{x}_2) \cdot u = u_1 \cdot \frac{\partial f(\bar{x}_1, \bar{x}_2)}{\partial x_1} + u_2 \cdot \frac{\partial f(\bar{x}_1, \bar{x}_2)}{\partial x_2}$$



Example

Compute the directional derivative of

$$f(x_1, x_2) = \sqrt{x_1^2 + 2x_2^2}$$

at the point $(-1, 2)$ in the direction of $\begin{pmatrix} -1\\3 \end{pmatrix}$.
 $f_{x_1}(x_1, x_2) = \frac{x_1}{\sqrt{x_1^2 + 2x_2^2}}, f_{x_2}(x_1, x_2) = \frac{2x_2}{\sqrt{x_1^2 + 2x_2^2}}$. This means
 $\nabla f(-1, 2) = \begin{pmatrix} f_{x_1}(-1, 2)\\ f_{x_2}(-1, 2) \end{pmatrix} = \begin{pmatrix} -\frac{1}{3}\\ \frac{4}{3} \end{pmatrix}.$

The direction vector is the vector that we get if we normalize $v = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$:

$$|v|=\sqrt{(-1)^2+3^2}=\sqrt{1+9}=\sqrt{10}$$
 So, the direction vector is $u=\begin{pmatrix}\frac{-1}{\sqrt{10}}\\\frac{3}{\sqrt{10}}\end{pmatrix}$.

The directional derivative of f at the point $\left(-1,2\right)$ in the direction of u is

$$D_u f(-1,2) = \nabla f(-1,2) \cdot u$$

= $\frac{1}{3\sqrt{10}} + \frac{12}{3\sqrt{10}}$
= $\frac{13}{3\sqrt{10}}$.

Remark

Suppose we have the direction vector

$$u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

The directional derivative of f at (\bar{x}_1,\bar{x}_2) w.r.t. u is

$$\begin{split} D_u f(\bar{x}_1, \bar{x}_2) &= \nabla f(\bar{x}_1, \bar{x}_2) \cdot u \\ &= \frac{\partial f(\bar{x}_1, \bar{x}_2)}{\partial x_1} \cdot 1 + \frac{\partial f(\bar{x}_1, \bar{x}_2)}{\partial x_2} \cdot 0 \\ &= \frac{\partial f(\bar{x}_1, \bar{x}_2)}{\partial x_1}, \text{ the partial derivative w.r.t. } x_1. \end{split}$$

Similarly, one can check that if $u = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, then the directional derivative of f at (\bar{x}_1, \bar{x}_2) w.r.t. u is $\frac{\partial f(\bar{x}_1, \bar{x}_2)}{\partial x_2}$.

Example

Compute the directional derivative of $f(x_1, x_2) = x_1^2 x_2 - 2x_2^2$ at the point (-3, 2) in the direction of (-1, 1). We have

$$f_{x_1} = 2x_1x_2, \quad f_{x_2} = x_1^2 - 4x_2,$$
$$\nabla f(-3, 2) = \begin{pmatrix} f_{x_1}(-3, 2) \\ f_{x_2}(-3, 2) \end{pmatrix} = \begin{pmatrix} -12 \\ 1 \end{pmatrix},$$
$$v = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \implies |v| = \sqrt{(-1)^2 + 1^2} = \sqrt{2}.$$

This means that the unit vector at the direction of v is

$$u = \frac{v}{|v|} = \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} -\sqrt{2}/2 \\ \sqrt{2}/2 \end{pmatrix}.$$

Hence, the directional derivative is

$$D_u f(-3,2) = \nabla f(-3,2) \cdot u = (-12) \cdot \left(-\frac{\sqrt{2}}{2}\right) + \frac{\sqrt{2}}{2} = \frac{13\sqrt{2}}{2}.$$

Suppose that (\bar{x}_1, \bar{x}_2) is a point in the domain of f and u is a unit vector. The directional derivative at (\bar{x}_1, \bar{x}_2) in the direction of u is

$$D_u(f(\bar{x}_1, \bar{x}_2)) = \nabla f(\bar{x}_1, \bar{x}_2) \cdot u$$

= $|\nabla f(\bar{x}_1, \bar{x}_2)| \cdot |u| \cdot \cos \theta$
= $|\nabla f(\bar{x}_1, \bar{x}_2)| \cdot \cos \theta$.

This means that the directional derivative is maximum when $\cos \theta = 1$, and u has the same direction as the gradient $\nabla f(\bar{x}_1, \bar{x}_2)$.

The gradient $\nabla f(\bar{x}_1, \bar{x}_2)$ points towards the direction at which $f(x_1, x_2)$ increases most rapidly.

Recall that the level sets (or level curves) of a function $f(x_1,x_2)$ are the sets of the form

$$L_c = \{ (x_1, x_2) \in \mathbb{R}^2 : f(x_1, x_2) = c \}.$$

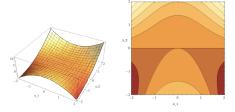
If (\bar{x}_1, \bar{x}_2) is a point on the level curve $L_c = \{(x_1, x_2) \in D : f(x_1, x_2) = c\}$, then the gradient of f, $\nabla f(\bar{x}_1, \bar{x}_2)$ at the point (\bar{x}_1, \bar{x}_2) is perpendicular to the level curve at the point (\bar{x}_1, \bar{x}_2) .

Example

Let $f(x_1, x_2) = x_1^2 x_2 + x_2^2$. What is the direction at the point (1, 1) at which the function f increases most rapidly?

$$f_{x_1}(x_1, x_2) = 2x_1x_2, \quad f_{x_2}(x_1, x_2) = x_1^2 + 2x_2, \quad \nabla f(1, 1) = \begin{pmatrix} 2\\ 3 \end{pmatrix}$$

The vector $\begin{pmatrix} 2\\ 3 \end{pmatrix}$ shows the direction at which f increases most rapidly.



Example

Let $f(x_1, x_2) = x_1^2 - x_2^2$.

- 1. What is the level curve of f that goes though the point (1,2)?
- 2. Find a vector perpendicular to this curve at the point (1,2).
- 1. We have $f(1,2)=1^2-2^2=-3,$ so the level curve of f that does through the point (1,2) is the curve

$$x_1^2 - x_2^2 = -3.$$

•

2. The requested vector is $\nabla f(1,2)$:

$$\frac{\partial f}{\partial x_1} = 2x_1, \quad \frac{\partial f}{\partial x_2} = -2x_2$$

and so $\nabla f(1,2) = \begin{pmatrix} 2\\ -4 \end{pmatrix}$.

