Gradient of a Function of Several Variables \& Directional Derivative

Elisabeth Köbis, elisabeth.kobis@ntnu.no

Gradient of a Function

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function which has partial derivatives of first order. We define the gradient of f at $\left(x_{1}, x_{2}\right)$ to be the vector

$$
\nabla f\left(x_{1}, x_{2}\right)=\binom{f_{x_{1}}\left(x_{1}, x_{2}\right)}{f_{x_{2}}\left(x_{1}, x_{2}\right)}
$$

Example

Let $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{1} x_{2}$. Then $f_{x_{1}}=2 x_{1}+x_{2}, f_{x_{2}}=x_{1}$. Hence,

$$
\nabla f\left(x_{1}, x_{2}\right)=\binom{2 x_{1}+x_{2}}{x_{1}}
$$

For example,

$$
\nabla f(1,-1)=\binom{1}{1}
$$

Directional Derivatives

Recall the geometric interpretation of $\frac{\partial f\left(\bar{x}_{1}, \bar{x}_{2}\right)}{\partial x_{1}}$ and $\frac{\partial f\left(\bar{x}_{1}, \bar{x}_{2}\right)}{\partial x_{2}}$.

We keep x_{2} constant and equal to \bar{x}_{2}. We intersect the graph of f with the plane $x_{2}=\bar{x}_{2}$.

$$
f\left(x_{1}, \bar{x}_{2}\right)
$$

> We get the graph of the function $g\left(x_{1}\right)=f\left(x_{1}, \bar{x}_{2}\right)$

The partial derivative $\frac{\partial f\left(\bar{x}_{1}, \bar{x}_{2}\right)}{\partial x_{1}}$ is the slope of the tangent at $\left(\bar{x}_{1}, f\left(\left(\bar{x}_{1}, \bar{x}_{2}\right)\right)\right)$.

Directional Derivatives

We keep x_{1} constant and equal to \bar{x}_{1}. We intersect the graph of f with the plane $x_{1}=\bar{x}_{1}$.

We get the graph of the function $g\left(x_{2}\right)=f\left(\bar{x}_{1}, x_{2}\right)$

The partial derivative $\frac{\partial f\left(\bar{x}_{1}, \bar{x}_{2}\right)}{\partial x_{2}}$ is the slope of the tangent at $\left(\bar{x}_{2}, f\left(\left(\bar{x}_{1}, \bar{x}_{2}\right)\right)\right)$.

Directional Derivatives

What if we want to find the rate of change of $f\left(x_{1}, x_{2}\right)$ as $\left(x_{1}, x_{2}\right)$ changes along another direction?

Directional Derivative

Let $u=\left(u_{1}, u_{2}\right)$ be a unit vector (i.e., $|u|=\sqrt{u_{1}^{2}+u_{2}^{2}=1}$). The directional derivative of $f\left(x_{1}, x_{2}\right)$ at the point $\left(\bar{x}_{1}, \bar{x}_{2}\right)$ in the direction of the unit vector $u=\left(u_{1}, u_{2}\right)$ is

$$
D_{u} f\left(\bar{x}_{1}, \bar{x}_{2}\right)=\nabla f\left(\bar{x}_{1}, \bar{x}_{2}\right) \cdot u=u_{1} \cdot \frac{\partial f\left(\bar{x}_{1}, \bar{x}_{2}\right)}{\partial x_{1}}+u_{2} \cdot \frac{\partial f\left(\bar{x}_{1}, \bar{x}_{2}\right)}{\partial x_{2}}
$$

Directional Derivative

Example

Compute the directional derivative of

$$
f\left(x_{1}, x_{2}\right)=\sqrt{x_{1}^{2}+2 x_{2}^{2}}
$$

at the point $(-1,2)$ in the direction of $\binom{-1}{3}$.
$f_{x_{1}}\left(x_{1}, x_{2}\right)=\frac{x_{1}}{\sqrt{x_{1}^{2}+2 x_{2}^{2}}}, f_{x_{2}}\left(x_{1}, x_{2}\right)=\frac{2 x_{2}}{\sqrt{x_{1}^{2}+2 x_{2}^{2}}}$. This means

$$
\nabla f(-1,2)=\binom{f_{x_{1}}(-1,2)}{f_{x_{2}}(-1,2)}=\binom{-\frac{1}{3}}{\frac{4}{3}}
$$

The direction vector is the vector that we get if we normalize $v=\binom{-1}{3}$:

$$
|v|=\sqrt{(-1)^{2}+3^{2}}=\sqrt{1+9}=\sqrt{10} .
$$

So, the direction vector is $u=\binom{\frac{-1}{\sqrt{10}}}{\frac{3}{\sqrt{10}}}$.

Directional Derivative

The directional derivative of f at the point $(-1,2)$ in the direction of u is

$$
\begin{aligned}
D_{u} f(-1,2) & =\nabla f(-1,2) \cdot u \\
& =\frac{1}{3 \sqrt{10}}+\frac{12}{3 \sqrt{10}} \\
& =\frac{13}{3 \sqrt{10}} .
\end{aligned}
$$

Directional Derivative

Remark

Suppose we have the direction vector

$$
u=\binom{1}{0}
$$

The directional derivative of f at $\left(\bar{x}_{1}, \bar{x}_{2}\right)$ w.r.t. u is

$$
\begin{aligned}
D_{u} f\left(\bar{x}_{1}, \bar{x}_{2}\right) & =\nabla f\left(\bar{x}_{1}, \bar{x}_{2}\right) \cdot u \\
& =\frac{\partial f\left(\bar{x}_{1}, \bar{x}_{2}\right)}{\partial x_{1}} \cdot 1+\frac{\partial f\left(\bar{x}_{1}, \bar{x}_{2}\right)}{\partial x_{2}} \cdot 0 \\
& =\frac{\partial f\left(\bar{x}_{1}, \bar{x}_{2}\right)}{\partial x_{1}}, \text { the partial derivative w.r.t. } x_{1} .
\end{aligned}
$$

Similarly, one can check that if $u=\binom{0}{1}$, then the directional derivative of f at $\left(\bar{x}_{1}, \bar{x}_{2}\right)$ w.r.t. u is $\frac{\partial f\left(\bar{x}_{1}, \bar{x}_{2}\right)}{\partial x_{2}}$.

Directional Derivative

Example

Compute the directional derivative of $f\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}-2 x_{2}^{2}$ at the point $(-3,2)$ in the direction of $(-1,1)$.
We have

$$
\begin{gathered}
f_{x_{1}}=2 x_{1} x_{2}, \quad f_{x_{2}}=x_{1}^{2}-4 x_{2}, \\
\nabla f(-3,2)=\binom{f_{x_{1}}(-3,2)}{f_{x_{2}}(-3,2)}=\binom{-12}{1}, \\
v=\binom{-1}{1} \Longrightarrow \quad|v|=\sqrt{(-1)^{2}+1^{2}}=\sqrt{2} .
\end{gathered}
$$

This means that the unit vector at the direction of v is

$$
u=\frac{v}{|v|}=\binom{-1 / \sqrt{2}}{1 / \sqrt{2}}=\binom{-\sqrt{2} / 2}{\sqrt{2} / 2} .
$$

Hence, the directional derivative is

$$
D_{u} f(-3,2)=\nabla f(-3,2) \cdot u=(-12) \cdot\left(-\frac{\sqrt{2}}{2}\right)+\frac{\sqrt{2}}{2}=\frac{13 \sqrt{2}}{2} .
$$

Directional Derivative

Suppose that (\bar{x}_{1}, \bar{x}_{2}) is a point in the domain of f and u is a unit vector. The directional derivative at $\left(\bar{x}_{1}, \bar{x}_{2}\right)$ in the direction of u is

$$
\begin{aligned}
D_{u}\left(f\left(\bar{x}_{1}, \bar{x}_{2}\right)\right) & =\nabla f\left(\bar{x}_{1}, \bar{x}_{2}\right) \cdot u \\
& =\left|\nabla f\left(\bar{x}_{1}, \bar{x}_{2}\right)\right| \cdot \underbrace{|u|}_{=1} \cdot \cos \theta \\
& =\left|\nabla f\left(\bar{x}_{1}, \bar{x}_{2}\right)\right| \cdot \cos \theta .
\end{aligned}
$$

This means that the directional derivative is maximum when $\cos \theta=1$, and u has the same direction as the gradient $\nabla f\left(\bar{x}_{1}, \bar{x}_{2}\right)$.

The gradient $\nabla f\left(\bar{x}_{1}, \bar{x}_{2}\right)$ points towards the direction at which $f\left(x_{1}, x_{2}\right)$ increases most rapidly.

Directional Derivative

Recall that the level sets (or level curves) of a function $f\left(x_{1}, x_{2}\right)$ are the sets of the form

$$
L_{c}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: f\left(x_{1}, x_{2}\right)=c\right\} .
$$

If $\left(\bar{x}_{1}, \bar{x}_{2}\right)$ is a point on the level curve $L_{c}=\left\{\left(x_{1}, x_{2}\right) \in D: f\left(x_{1}, x_{2}\right)=\right.$
$c\}$, then the gradient of $f, \nabla f\left(\bar{x}_{1}, \bar{x}_{2}\right)$ at the point $\left(\bar{x}_{1}, \bar{x}_{2}\right)$ is perpendicular
to the level curve at the point $\left(\bar{x}_{1}, \bar{x}_{2}\right)$.

Directional Derivative

Example

Let $f\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}+x_{2}^{2}$. What is the direction at the point $(1,1)$ at which the function f increases most rapidly?

$$
f_{x_{1}}\left(x_{1}, x_{2}\right)=2 x_{1} x_{2}, \quad f_{x_{2}}\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{2}, \quad \nabla f(1,1)=\binom{2}{3}
$$

The vector $\binom{2}{3}$ shows the direction at which f increases most rapidly.

Directional Derivative

Example

Let $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}$.

1. What is the level curve of f that goes though the point $(1,2)$?
2. Find a vector perpendicular to this curve at the point $(1,2)$.
3. We have $f(1,2)=1^{2}-2^{2}=-3$, so the level curve of f that does through the point $(1,2)$ is the curve

$$
x_{1}^{2}-x_{2}^{2}=-3 .
$$

2. The requested vector is $\nabla f(1,2)$:

$$
\begin{aligned}
& \qquad \frac{\partial f}{\partial x_{1}}=2 x_{1}, \quad \frac{\partial f}{\partial x_{2}}=-2 x_{2} \text {, } \\
& \text { and so } \nabla f(1,2)=\binom{2}{-4}
\end{aligned}
$$

