Elisabeth Köbis, elisabeth.kobis@ntnu.no

Derivatives of 1-Variable Functions

For functions f of one variable, we say that f is differentiable at the point \bar{x} with derivative equal to $f'(\bar{x})$ if

$$\lim_{x \to \bar{x}} \frac{f(x) - f(\bar{x})}{x - \bar{x}} = \lim_{h \to 0} \frac{f(\bar{x} + h) - f(\bar{x})}{h} = f'(\bar{x}).$$

In that case, the number $f'(\bar{x})$ is the slope of the tangent at the graph of f at the point $(\bar{x}, f(\bar{x}))$.

Derivatives of 1-Variable Functions

The function which assigns to each value of x the derivative f'(x) is called the **first derivative** of f.

Example

When $f(x) = x^2 + 1 + \exp(x)$, then its first derivative is the function

$$f'(x) = 2x + \exp(x).$$

Explanation: We get

$$(x^{2})'\Big|_{x=\bar{x}} = \lim_{h \to 0} \frac{(\bar{x}+h)^{2} - \bar{x}^{2}}{h}$$
$$= \lim_{h \to 0} \frac{\bar{x}^{2} + 2\bar{x}h + h^{2} - \bar{x}^{2}}{h}$$
$$= \lim_{h \to 0} \frac{2\bar{x}h + h^{2}}{h} = \lim_{h \to 0} \left(\frac{2\bar{x}h}{h} + \frac{h^{2}}{h}\right)$$
$$= \lim_{h \to 0} (2\bar{x} + h) = 2\bar{x},$$

Derivatives of 1-Variable Functions

$$(1)' = \lim_{h \to 0} \frac{1-1}{h} = 0$$

and

$$\begin{aligned} (\exp(\bar{x}))' &= \lim_{h \to 0} \frac{\exp(\bar{x} + h) - \exp(\bar{x})}{h} \\ &= \lim_{h \to 0} \frac{\exp(\bar{x}) \exp(h) - \exp(\bar{x})}{h} \\ &= \lim_{h \to 0} \frac{\exp(\bar{x}) (\exp(h) - 1)}{h} \\ &= \exp(\bar{x}) \underbrace{\lim_{h \to 0} \frac{\exp(h) - 1}{h}}_{=1} \\ &= \exp(\bar{x}). \end{aligned}$$

Derivatives of 2-Variable Functions

Assume we have a function $f(x_1, x_2)$ of two variables. If we treat one of the two variables as a constant, we can differentiate with respect to the other variable (as if we had a function of one variable).

Example

Let $f(x_1, x_2) = x_1 x_2 + x_1^3 x_2^2$. If we treat x_2 as a constant, we have a function of x_1 , which is

$$g(x_1) = f(x_1, x_2) = x_1 x_2 + x_1^3 x_2^2.$$

Differentiating g, we get

$$g'(x_1) = x_2 + 3x_1^2 x_2^2.$$

We define the **partial derivative** of $f(x_1, x_2)$ with respect to x_1 at the point (\bar{x}_1, \bar{x}_2) to be the number

$$\frac{\partial f(\bar{x}_1, \bar{x}_2)}{\partial x_1} = \lim_{h \to 0} \frac{f(\bar{x}_1 + h, \bar{x}_2) - f(\bar{x}_1, \bar{x}_2)}{h},$$

and the partial derivative of $f(x_1, x_2)$ with respect to x_2 at the point (\bar{x}_1, \bar{x}_2) is defined as

$$\frac{\partial f(\bar{x}_1, \bar{x}_2)}{\partial x_2} = \lim_{h \to 0} \frac{f(\bar{x}_1, \bar{x}_2 + h) - f(\bar{x}_1, \bar{x}_2)}{h},$$

assuming that these limits exist and are real numbers.

The functions that map each point (x_1, x_2) to the partial derivative of f w.r.t. x_1 (x_2 , respectively) are denoted by

$$rac{\partial f(x_1,x_2)}{\partial x_1}$$
 and $rac{\partial f(x_1,x_2)}{\partial x_2}$

and are also called the **partial derivatives** of f w.r.t. x_1 (x_2 , respectively).

Sometimes, we write $f_{x_1}(x_1, x_2)$ instead of $\frac{\partial f(x_1, x_2)}{\partial x_1}$ and $f_{x_2}(x_1, x_2)$ instead of $\frac{\partial f(x_1, x_2)}{\partial x_2}$.

Example

Find the partial derivatives $\frac{\partial f(x_1,x_2)}{\partial x_1}$, $\frac{\partial f(x_1,x_2)}{\partial x_2}$ when $f(x_1,x_2) = x_2 \exp(x_1x_2)$.

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = x_2^2 \exp(x_1 x_2)$$
$$\frac{\partial f(x_1, x_2)}{\partial x_2} = \frac{\partial x_2}{\partial x_2} \cdot \exp(x_1 x_2) + x_2 \frac{\partial \exp(x_1 x_2)}{\partial x_2}$$
$$= \exp(x_1 x_2) + x_1 x_2 \exp(x_1 x_2) = (1 + x_1 x_2) \exp(x_1 x_2).$$

Example

Find the partial derivatives $\frac{\partial f(x_1,x_2)}{\partial x_1}$, $\frac{\partial f(x_1,x_2)}{\partial x_2}$ when $f(x_1,x_2) = \frac{\sin(x_1x_2)}{x_1^2 + \cos(x_2)}$.

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = \frac{u_{x_1}v - v_{x_1}u}{v^2}$$
$$= \frac{x_2 \cos(x_1 x_2)(x_1^2 + \cos(x_2)) - 2x_1 \sin(x_1 x_2)}{(x_1^2 + \cos(x_2))^2}$$
$$u = \sin(x_1 x_2) \quad u_{x_1} = x_2 \cos(x_1 x_2)$$
$$v = x_1^2 + \cos(x_2) \quad v_{x_1} = 2x_1$$

$$\frac{\partial f(x_1, x_2)}{\partial x_2} = \frac{u_{x_2}v - v_{x_2}u}{v^2}$$
$$= \frac{x_1 \cos(x_1 x_2)(x_1^2 + \cos(x_2)) - (-\sin(x_2))\sin(x_1 x_2)}{(x_1^2 + \cos(x_2))^2}$$
$$= \frac{x_1 \cos(x_1 x_2)(x_1^2 + \cos(x_2)) + \sin(x_2)\sin(x_1 x_2)}{(x_1^2 + \cos(x_2))^2}$$

$$u = \sin(x_1 x_2) \quad u_{x_2} = x_1 \cos(x_1 x_2)$$
$$v = x_1^2 + \cos(x_2) \quad v_{x_2} = -\sin(x_2)$$

Partial Derivatives - Geometric Interpretations

We keep x_2 constant and equal to \bar{x}_2 . We intersect the graph of f with the plane $x_2 = \bar{x}_2$.

We get the graph of the function $g(x_1) = f(x_1, \bar{x}_2)$

The partial derivative $\frac{\partial f(\bar{x}_1, \bar{x}_2)}{\partial x_1}$ is the slope of the tangent at $(\bar{x}_1, f((\bar{x}_1, \bar{x}_2)))$.

Partial Derivatives - Geometric Interpretations

We keep x_1 constant and equal to \bar{x}_1 . We intersect the graph of f with the plane $x_1 = \bar{x}_1$.

Partial Derivatives for Functions of More Than 2 Variables

Partial Derivatives are also defined similarly for functions of more than two variables.

Example

$$f(x_1, x_2, x_3) = \exp(x_2 x_3)(x_1^2 + x_3^3)$$
. Then

$$\begin{aligned} \frac{\partial f(x_1, x_2, x_3)}{\partial x_1} &= 2x_1 \exp(x_2 x_3) \\ \frac{\partial f(x_1, x_2, x_3)}{\partial x_2} &= x_3 \exp(x_2 x_3)(x_1^2 + x_3^3) \\ \frac{\partial f(x_1, x_2, x_3)}{\partial x_3} &= x_2 \exp(x_2 x_3)(x_1^2 + x_3^3) + 3x_3^2 \exp(x_2 x_3) \end{aligned}$$

Partial Derivatives of Higher Orders

We can also compute partial derivatives of higher orders. Given a function $f(x_1, x_2)$, its second order partial derivatives are:

$$f_{x_1x_1}(x_1, x_2) = \frac{\partial}{\partial x_1} \left(\frac{\partial f(x_1, x_2)}{\partial x_1} \right)$$
$$f_{x_2x_2}(x_1, x_2) = \frac{\partial}{\partial x_2} \left(\frac{\partial f(x_1, x_2)}{\partial x_2} \right)$$
$$f_{x_1x_2}(x_1, x_2) = \frac{\partial}{\partial x_2} \left(\frac{\partial f(x_1, x_2)}{\partial x_1} \right)$$
$$f_{x_2x_1}(x_1, x_2) = \frac{\partial}{\partial x_1} \left(\frac{\partial f(x_1, x_2)}{\partial x_2} \right)$$

Partial Derivatives of Higher Orders

Example

Let $f(x_1, x_2) = \sin(x_1) + x_1 \exp(x_2)$. Find the partial derivatives of second order of f.

$$f_{x_1}(x_1, x_2) = f_{x_2}(x_1, x_2) = f_{x_1x_1}(x_1, x_2) = f_{x_2x_2}(x_1, x_2) = f_{x_1x_2}(x_1, x_2) = f_{x_2x_1}(x_1, x_2) =$$

Remark

The partial derivatives $f_{x_1x_2}$, $f_{x_2x_1}$ of second order are called the **mixed** derivatives of f.

Partial Derivatives of Higher Orders

In the previous example, we found that the two partial derivatives $f_{x_1x_2}$, $f_{x_2x_1}$ were equal. This is not always the case. However, we are able to constitute the following assertion:

Theorem

Assume $f: D \to \mathbb{R}$ $(D \subseteq \mathbb{R}^2)$ has mixed partial derivatives $f_{x_1x_2}$, $f_{x_2x_1}$ which are continuous in some open disc centered around (\bar{x}_1, \bar{x}_2) . Then

$$f_{x_1x_2}(\bar{x}_1, \bar{x}_2) = f_{x_2x_1}(\bar{x}_1, \bar{x}_2).$$