Partial Derivatives

Elisabeth Köbis, elisabeth.kobis@ntnu.no

Derivatives of 1-Variable Functions

For functions f of one variable, we say that f is differentiable at the point \bar{x} with derivative equal to $f^{\prime}(\bar{x})$ if

$$
\lim _{x \rightarrow \bar{x}} \frac{f(x)-f(\bar{x})}{x-\bar{x}}=\lim _{h \rightarrow 0} \frac{f(\bar{x}+h)-f(\bar{x})}{h}=f^{\prime}(\bar{x}) .
$$

In that case, the number $f^{\prime}(\bar{x})$ is the slope of the tangent at the graph of f at the point $(\bar{x}, f(\bar{x}))$.

Derivatives of 1-Variable Functions

The function which assigns to each value of x the derivative $f^{\prime}(x)$ is called the first derivative of f.

Example

When $f(x)=x^{2}+1+\exp (x)$, then its first derivative is the function

$$
f^{\prime}(x)=2 x+\exp (x)
$$

Explanation: We get

$$
\begin{aligned}
\left.\left(x^{2}\right)^{\prime}\right|_{x=\bar{x}} & =\lim _{h \rightarrow 0} \frac{(\bar{x}+h)^{2}-\bar{x}^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\bar{x}^{2}+2 \bar{x} h+h^{2}-\bar{x}^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 \bar{x} h+h^{2}}{h}=\lim _{h \rightarrow 0}\left(\frac{2 \bar{x} h}{h}+\frac{h^{2}}{h}\right) \\
& =\lim _{h \rightarrow 0}(2 \bar{x}+h)=2 \bar{x},
\end{aligned}
$$

Derivatives of 1-Variable Functions

$$
(1)^{\prime}=\lim _{h \rightarrow 0} \frac{1-1}{h}=0
$$

and

$$
\begin{aligned}
(\exp (\bar{x}))^{\prime} & =\lim _{h \rightarrow 0} \frac{\exp (\bar{x}+h)-\exp (\bar{x})}{h} \\
& =\lim _{h \rightarrow 0} \frac{\exp (\bar{x}) \exp (h)-\exp (\bar{x})}{h} \\
& =\lim _{h \rightarrow 0} \frac{\exp (\bar{x})(\exp (h)-1)}{h} \\
& =\exp (\bar{x}) \underbrace{\lim _{h \rightarrow 0} \frac{\exp (h)-1}{h}}_{=1} \\
& =\exp (\bar{x})
\end{aligned}
$$

Derivatives of 2-Variable Functions

Assume we have a function $f\left(x_{1}, x_{2}\right)$ of two variables. If we treat one of the two variables as a constant, we can differentiate with respect to the other variable (as if we had a function of one variable).

Example

Let $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+x_{1}^{3} x_{2}^{2}$. If we treat x_{2} as a constant, we have a function of x_{1}, which is

$$
g\left(x_{1}\right)=f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+x_{1}^{3} x_{2}^{2} .
$$

Differentiating g, we get

$$
g^{\prime}\left(x_{1}\right)=x_{2}+3 x_{1}^{2} x_{2}^{2} .
$$

Partial Derivatives

We define the partial derivative of $f\left(x_{1}, x_{2}\right)$ with respect to x_{1} at the point (\bar{x}_{1}, \bar{x}_{2}) to be the number

$$
\frac{\partial f\left(\bar{x}_{1}, \bar{x}_{2}\right)}{\partial x_{1}}=\lim _{h \rightarrow 0} \frac{f\left(\bar{x}_{1}+h, \bar{x}_{2}\right)-f\left(\bar{x}_{1}, \bar{x}_{2}\right)}{h},
$$

and the partial derivative of $f\left(x_{1}, x_{2}\right)$ with respect to x_{2} at the point $\left(\bar{x}_{1}, \bar{x}_{2}\right)$ is defined as

$$
\frac{\partial f\left(\bar{x}_{1}, \bar{x}_{2}\right)}{\partial x_{2}}=\lim _{h \rightarrow 0} \frac{f\left(\bar{x}_{1}, \bar{x}_{2}+h\right)-f\left(\bar{x}_{1}, \bar{x}_{2}\right)}{h}
$$

assuming that these limits exist and are real numbers.

Partial Derivatives

The functions that map each point $\left(x_{1}, x_{2}\right)$ to the partial derivative of f w.r.t. x_{1} (x_{2}, respectively) are denoted by

$$
\frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{1}} \quad \text { and } \quad \frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{2}}
$$

and are also called the partial derivatives of f w.r.t. x_{1} (x_{2}, respectively).
Sometimes, we write $f_{x_{1}}\left(x_{1}, x_{2}\right)$ instead of $\frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{1}}$ and $f_{x_{2}}\left(x_{1}, x_{2}\right)$ instead of $\frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{2}}$.

Partial Derivatives

Example

Find the partial derivatives $\frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{1}}, \frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{2}}$ when $f\left(x_{1}, x_{2}\right)=x_{2} \exp \left(x_{1} x_{2}\right)$.

$$
\begin{aligned}
\frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{1}} & =x_{2}^{2} \exp \left(x_{1} x_{2}\right) \\
\frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{2}} & =\frac{\partial x_{2}}{\partial x_{2}} \cdot \exp \left(x_{1} x_{2}\right)+x_{2} \frac{\partial \exp \left(x_{1} x_{2}\right)}{\partial x_{2}} \\
& =\exp \left(x_{1} x_{2}\right)+x_{1} x_{2} \exp \left(x_{1} x_{2}\right)=\left(1+x_{1} x_{2}\right) \exp \left(x_{1} x_{2}\right)
\end{aligned}
$$

Partial Derivatives

Example

Find the partial derivatives $\frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{1}}, \frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{2}}$ when $f\left(x_{1}, x_{2}\right)=\frac{\sin \left(x_{1} x_{2}\right)}{x_{1}^{2}+\cos \left(x_{2}\right)}$.

$$
\begin{aligned}
& \frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{1}}= \frac{u_{x_{1}} v-v_{x_{1}} u}{v^{2}} \\
&= \frac{x_{2} \cos \left(x_{1} x_{2}\right)\left(x_{1}^{2}+\cos \left(x_{2}\right)\right)-2 x_{1} \sin \left(x_{1} x_{2}\right)}{\left(x_{1}^{2}+\cos \left(x_{2}\right)\right)^{2}} \\
& u=\sin \left(x_{1} x_{2}\right) \quad u_{x_{1}}=x_{2} \cos \left(x_{1} x_{2}\right) \\
& v=x_{1}^{2}+\cos \left(x_{2}\right) \quad v_{x_{1}}=2 x_{1}
\end{aligned}
$$

Partial Derivatives

$$
\begin{aligned}
\frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{2}}= & \frac{u_{x_{2}} v-v_{x_{2}} u}{v^{2}} \\
= & \frac{x_{1} \cos \left(x_{1} x_{2}\right)\left(x_{1}^{2}+\cos \left(x_{2}\right)\right)-\left(-\sin \left(x_{2}\right)\right) \sin \left(x_{1} x_{2}\right)}{\left(x_{1}^{2}+\cos \left(x_{2}\right)\right)^{2}} \\
= & \frac{x_{1} \cos \left(x_{1} x_{2}\right)\left(x_{1}^{2}+\cos \left(x_{2}\right)\right)+\sin \left(x_{2}\right) \sin \left(x_{1} x_{2}\right)}{\left(x_{1}^{2}+\cos \left(x_{2}\right)\right)^{2}} \\
& u=\sin \left(x_{1} x_{2}\right) \quad u_{x_{2}}=x_{1} \cos \left(x_{1} x_{2}\right) \\
& v=x_{1}^{2}+\cos \left(x_{2}\right) \quad v_{x_{2}}=-\sin \left(x_{2}\right)
\end{aligned}
$$

Partial Derivatives - Geometric Interpretations

We keep x_{2} constant and equal to \bar{x}_{2}. We intersect the graph of f with the plane $x_{2}=\bar{x}_{2}$.

$$
f\left(x_{1}, \bar{x}_{2}\right)
$$

We get the graph of the function $g\left(x_{1}\right)=f\left(x_{1}, \bar{x}_{2}\right)$

The partial derivative $\frac{\partial f\left(\bar{x}_{1}, \bar{x}_{2}\right)}{\partial x_{1}}$ is the slope of the tangent at $\left(\bar{x}_{1}, f\left(\left(\bar{x}_{1}, \bar{x}_{2}\right)\right)\right)$.

Partial Derivatives - Geometric Interpretations

We keep x_{1} constant and equal to \bar{x}_{1}. We intersect the graph of f with the plane $x_{1}=\bar{x}_{1}$.

We get the graph of the function $g\left(x_{2}\right)=f\left(\bar{x}_{1}, x_{2}\right)$

The partial derivative $\frac{\partial f\left(\bar{x}_{1}, \bar{x}_{2}\right)}{\partial x_{2}}$ is the slope of the tangent at $\left(\bar{x}_{2}, f\left(\left(\bar{x}_{1}, \bar{x}_{2}\right)\right)\right)$.

Partial Derivatives for Functions of More Than 2 Variables

Partial Derivatives are also defined similarly for functions of more than two variables.

Example
$f\left(x_{1}, x_{2}, x_{3}\right)=\exp \left(x_{2} x_{3}\right)\left(x_{1}^{2}+x_{3}^{3}\right)$. Then

$$
\begin{aligned}
& \frac{\partial f\left(x_{1}, x_{2}, x_{3}\right)}{\partial x_{1}}=2 x_{1} \exp \left(x_{2} x_{3}\right) \\
& \frac{\partial f\left(x_{1}, x_{2}, x_{3}\right)}{\partial x_{2}}=x_{3} \exp \left(x_{2} x_{3}\right)\left(x_{1}^{2}+x_{3}^{3}\right) \\
& \frac{\partial f\left(x_{1}, x_{2}, x_{3}\right)}{\partial x_{3}}=x_{2} \exp \left(x_{2} x_{3}\right)\left(x_{1}^{2}+x_{3}^{3}\right)+3 x_{3}^{2} \exp \left(x_{2} x_{3}\right)
\end{aligned}
$$

Partial Derivatives of Higher Orders

We can also compute partial derivatives of higher orders. Given a function $f\left(x_{1}, x_{2}\right)$, its second order partial derivatives are:

$$
\begin{aligned}
& f_{x_{1} x_{1}}\left(x_{1}, x_{2}\right)=\frac{\partial}{\partial x_{1}}\left(\frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{1}}\right) \\
& f_{x_{2} x_{2}}\left(x_{1}, x_{2}\right)=\frac{\partial}{\partial x_{2}}\left(\frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{2}}\right) \\
& f_{x_{1} x_{2}}\left(x_{1}, x_{2}\right)=\frac{\partial}{\partial x_{2}}\left(\frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{1}}\right) \\
& f_{x_{2} x_{1}}\left(x_{1}, x_{2}\right)=\frac{\partial}{\partial x_{1}}\left(\frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{2}}\right)
\end{aligned}
$$

Partial Derivatives of Higher Orders

Example

Let $f\left(x_{1}, x_{2}\right)=\sin \left(x_{1}\right)+x_{1} \exp \left(x_{2}\right)$. Find the partial derivatives of second order of f.

$$
\begin{aligned}
f_{x_{1}}\left(x_{1}, x_{2}\right) & = \\
f_{x_{2}}\left(x_{1}, x_{2}\right) & = \\
f_{x_{1} x_{1}}\left(x_{1}, x_{2}\right) & = \\
f_{x_{2} x_{2}}\left(x_{1}, x_{2}\right) & = \\
f_{x_{1} x_{2}}\left(x_{1}, x_{2}\right) & = \\
f_{x_{2} x_{1}}\left(x_{1}, x_{2}\right) & =
\end{aligned}
$$

Remark

The partial derivatives $f_{x_{1} x_{2}}, f_{x_{2} x_{1}}$ of second order are called the mixed derivatives of f.

Partial Derivatives of Higher Orders

In the previous example, we found that the two partial derivatives $f_{x_{1} x_{2}}$, $f_{x_{2} x_{1}}$ were equal. This is not always the case. However, we are able to constitute the following assertion:
Theorem
Assume $f: D \rightarrow \mathbb{R}\left(D \subseteq \mathbb{R}^{2}\right)$ has mixed partial derivatives $f_{x_{1} x_{2}}, f_{x_{2} x_{1}}$ which are continuous in some open disc centered around (\bar{x}_{1}, \bar{x}_{2}). Then

$$
f_{x_{1} x_{2}}\left(\bar{x}_{1}, \bar{x}_{2}\right)=f_{x_{2} x_{1}}\left(\bar{x}_{1}, \bar{x}_{2}\right) .
$$

