Equations in Parametric Form

Elisabeth Köbis, elisabeth.kobis@ntnu.no

Equations in Parametric Form

Apart from the Cartesian equation and the vector equation, a line can be described by equations in parametric form (i.e., equations that involve some parameters).

Example

Given the equations

$$
\begin{aligned}
& x=2 t-1 \\
& y=3-t, \quad t \in \mathbb{R},
\end{aligned}
$$

where does the point (x, y) lie when x, y satisfy these equations?
Let us eliminate the parameter t from the equations:

$$
\begin{aligned}
& y=3-t \quad \Longrightarrow \quad t=3-y \\
& x=2 t-1 \quad \Longrightarrow \quad x=2(3-y)-1 \quad \Longrightarrow \quad x+2 y=5
\end{aligned}
$$

and this is the equation of a line.

Equations in Parametric Form

For $t=1$, we have $(1,2)$, and for $t=5$, we have $(9,-2)$:

Equations in Parametric Form

Assume now that for a line we only know two facts:

- the line goes through the point $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}\right)^{T}$
- the line is parallel to the vector $u=\left(u_{1}, u_{2}\right)^{T}$.

For the arbitrary point $x=\left(x_{1}, x_{2}\right)^{T}$ on the line, the vector $x-\bar{x}$ will be parallel to u, hence, there exists a $t \in \mathbb{R}$ such that

$$
x-\bar{x}=t u \quad \Longrightarrow \quad\binom{x_{1}-\bar{x}_{1}}{x_{2}-\bar{x}_{2}}=t\binom{u_{1}}{u_{2}} .
$$

This implies

$$
\begin{aligned}
& x_{1}-\bar{x}_{1}=u_{1} t \\
& x_{2}-\bar{x}_{2}=u_{2} t, \quad t \in \mathbb{R}
\end{aligned}
$$

Hence,

$$
\begin{align*}
& x_{1}=u_{1} t+\bar{x}_{1} \tag{1}\\
& x_{2}=u_{2} t+\bar{x}_{2}, \quad t \in \mathbb{R}
\end{align*}
$$

The pair of equations (1) is called parametric equation of the line.

Equations in Parametric Form - Example

Find the parametric equations of the line in the plane that goes through the point $(2,1)$ in the direction of the vector $(-1,-3)^{T}$. What is the standard (Cartesian) equation of the same line?
Solution: Let $x=\binom{x_{1}}{x_{2}}, \bar{x}=\binom{\bar{x}_{1}}{\bar{x}_{2}}=\binom{2}{1}, u=\binom{-1}{-3}$. Then

$$
x-\bar{x}=t u \quad \Longrightarrow \quad\binom{x_{1}-2}{x_{2}-1}=t\binom{-1}{-3} .
$$

This implies

$$
\begin{aligned}
& x_{1}=2-t \\
& x_{2}=1-3 t, \quad t \in \mathbb{R} .
\end{aligned}
$$

To find the standard equation of the line, we eliminate $t \in \mathbb{R}$ from the parametric equations:

$$
x_{1}=2-t \quad \Longrightarrow \quad t=2-x_{1}
$$

and

$$
x_{2}=1-3 t \quad \Longrightarrow \quad x_{2}=1-3\left(2-x_{1}\right) \quad \Longrightarrow \quad x_{2}=3 x_{1}-5 .
$$

Parametric Equation: Example

Find the parametric equations of the line in the plane that goes through the points $(-1,2)^{T}$ and $(3,5)^{T}$.
Solution: The line goes through the point $(-1,2)^{T}$ and is parallel to the vector

$$
u=\binom{3}{5}-\binom{-1}{2}=\binom{4}{3} .
$$

Hence, the line in parametric equations is

$$
\begin{aligned}
& x_{1}=4 t-1 \\
& x_{2}=3 t+2, \quad t \in \mathbb{R} .
\end{aligned}
$$

Parametric Equation: Example

Formulate the parametric equations of the line $2 x_{1}-3 x_{2}+1=0$.
Solution: We set one of the variables x_{1}, x_{2} equal to the parameter $t \in \mathbb{R}$, for example, let $x_{1}=t, t \in \mathbb{R}$. Then

$$
\begin{gathered}
2 x_{1}-3 x_{2}+1=0 \quad \Longrightarrow \quad 3 x_{2}=2 t+1 \\
\Longrightarrow \quad x_{2}=\frac{2}{3} t+\frac{1}{3}
\end{gathered}
$$

Hence, the parametric equations of the line are

$$
\begin{aligned}
& x_{1}=t \\
& x_{2}=\frac{2}{3} t+\frac{1}{3}, \quad t \in \mathbb{R}
\end{aligned}
$$

Remark

This solution we found is not unique. For example, one could have set $x_{2}=t$ and find

$$
\begin{aligned}
& x_{1}=\frac{3}{2} t-\frac{1}{2} \\
& x_{2}=t, \quad t \in \mathbb{R} .
\end{aligned}
$$

