Linear Algebra Matrix Multiplication

Elisabeth Köbis, elisabeth.kobis@ntnu.no

First, let us remember the scalar product of two vectors. If $\vec{a} = (a_1, a_2)$, $\vec{b} = (b_1, b_2)$, then the scalar product of \vec{a} and \vec{b} (also called inner product or dual product) is

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_1 b_1 + a_2 b_2.$$

E.g., if $\overrightarrow{a} = (2,1)$, $\overrightarrow{b} = (-1,3)$, then $\overrightarrow{a} \cdot \overrightarrow{b} = 2 \cdot (-1) + 1 \cdot 3 = 1$.

The same definition of scalar product can be extended to *n*-dimensional vectors:

If $\overrightarrow{x} = (x_1, x_2, \dots, x_n)$, $\overrightarrow{y} = (y_1, y_2, \dots, y_n)$, then the scalar product of \overrightarrow{x} and \overrightarrow{y} is

$$\overrightarrow{x} \cdot \overrightarrow{y} = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n = \sum_{i=1}^n x_i y_i.$$

E.g., if
$$\overrightarrow{a} = (1, 0, 2, -1)$$
, $\overrightarrow{b} = (2, -3, 1, 0)$, then $\overrightarrow{a} \cdot \overrightarrow{b} = 1 \cdot 2 + 0 + 2 \cdot 1 + 0 = 4$.

Note that the scalar product is only defined for vectors of the same dimension.

Suppose that A is an $m \times n$ matrix and B is an $n \times p$ matrix:

$$A = (a_{ij})_{i \le m, j \le n}, \quad B = (b_{ij})_{i \le n, j \le p}.$$

We define the product $A \cdot B$ to be the $m \times p$ matrix $A \cdot B = (c_{ij})_{i \le m, \ j \le p}$, where

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{in}b_{nj}$$

(i.e., c_{ij} is the scalar product of the *i*-th row of A with the *j*-th column of B).

Example 1

Let

$$A = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 2 \end{pmatrix}.$$

Calculate $A \cdot B$.

$$A \cdot B = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 2 \end{pmatrix} =$$

Example 1

Let

$$A = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 2 \end{pmatrix}.$$

Calculate $A \cdot B$.

$$A \cdot B = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 \cdot 1 + 1 \cdot 1 = 3 \\ \end{pmatrix}$$

Example 1

Let

$$A = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 2 \end{pmatrix}.$$

Calculate $A \cdot B$.

$$A \cdot B = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 2 \cdot 0 + 1 \cdot 1 = 1 \\ & & \end{pmatrix}$$

Example 1

Let

$$A = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 2 \end{pmatrix}.$$

Calculate $A \cdot B$.

$$A \cdot B = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 2 \cdot 2 + 1 \cdot 2 = 6 \\ & & \end{pmatrix}$$

Example 1

Let

$$A = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 2 \end{pmatrix}.$$

Calculate $A \cdot B$.

$$A \cdot B = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 6 \\ 1 \cdot 1 + (-1) \cdot 1 = 0 \end{pmatrix}$$

Example 1

Let

$$A = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 2 \end{pmatrix}.$$

Calculate $A \cdot B$.

$$A \cdot B = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 6 \\ 1 & 1 \cdot 0 + (-1) \cdot 1 = -1 & \end{pmatrix}$$

Example 1

Let

$$A = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 2 \end{pmatrix}.$$

Calculate $A \cdot B$.

$$A \cdot B = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 6 \\ 1 & -1 & 1 \cdot 2 + (-1) \cdot 2 = 0 \end{pmatrix}$$

Example 1

Let

$$A = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 2 \end{pmatrix}.$$

Calculate $A \cdot B$.

$$A \cdot B = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 6 \\ 1 & -1 & 0 \end{pmatrix}$$

Example 2

Let

$$A = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 2 \end{pmatrix}.$$

What is $B \cdot A$?

B is 2×3 , *A* is 2×2 , so the product $B \cdot A$ is not defined. Remember: We can only multiply an $m \times n$ matrix with an $n \times p$ matrix, and the product will be an $m \times p$ matrix.

Example 3

Let

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3 & -3 \\ 0 & -1 & 4 & 0 \\ -1 & 0 & -2 & 1 \end{pmatrix}$$

What is $A \cdot B$?

 $A \text{ is } 2 \times 3, \ B \text{ is } 3 \times 4, \text{ so the product } A \cdot B \text{ will be a } 2 \times 4 \text{ matrix.}$

$$A \cdot B = \begin{pmatrix} -2 & 0 & 5 & 0\\ -5 & -2 & -11 & 7 \end{pmatrix}.$$

Example 4

Let

$$A = \begin{pmatrix} 2 & 1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.$$

Find $A \cdot B$ and $B \cdot A$. Are these equal?

A is 1×3 (row vector), B is 3×1 (column vector), so the product $A \cdot B$ will be a 1×1 matrix (hence, a scalar) and the product $B \cdot A$ will be a 3×3 matrix. Hence, $A \cdot B$ and $B \cdot A$ cannot be equal.

$$A \cdot B = \begin{pmatrix} 2 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = (1).$$
$$B \cdot A = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & -1 \\ -2 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Example 5 Let

$$A = \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix}.$$

Find $A \cdot B$ and $B \cdot A$. Is $A \cdot B = B \cdot A$?

$$A \cdot B = \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0_{2 \times 2}.$$
$$B \cdot A = \begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ -4 & 2 \end{pmatrix}.$$

So, $AB \neq BA$.

This last example shows the following:

- 1. When A, B are $n \times n$ (square) matrices, then AB and BA are not necessarily equal, i.e., matrix multiplication is not commutative (unlike multiplications of real numbers).
- 2. When a, b are real numbers and $a \cdot b = 0$, then a = 0 or b = 0. This does not happen with matrix multiplication: $A \cdot B = 0$ does not necessarily imply A = 0 or B = 0.

The following properties hold whenever the products that are appearing are well-defined (i.e., if multiplication of the corresponding matrices is acceptable):

1.
$$(A + B) \cdot C = A \cdot C + B \cdot C$$
.
2. $A \cdot (B + C) = A \cdot B + A \cdot C$.
3. $A \cdot (B \cdot C) = (A \cdot B) \cdot C$.
4. $A \cdot 0 = 0 \cdot A = 0$.

When A is a square $(n\times n)$ matrix, we can define the powers of A as follows:

$$\begin{aligned} A^2 &= A \cdot A \\ A^3 &= A^2 \cdot A \\ &\vdots \\ A^{n+1} &= A^n \cdot A. \end{aligned}$$

E.g., if $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, then
$$A^2 &= \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix}, \\ A^3 &= \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 37 & 54 \\ 81 & 118 \end{pmatrix}$$

Identity Matrix

We define the $n\times n$ identity matrix to be

$$I_n = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Multiplication with the Identity Matrix

Whenever A is an $n\times n$ matrix, we have

$$A \cdot I_n = I_n \cdot A = A.$$

E.g., if
$$A = \begin{pmatrix} 1 & -10 \\ 2 & 21 \end{pmatrix}$$
, then
 $I_2 \cdot A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -10 \\ 2 & 21 \end{pmatrix} = \begin{pmatrix} 1 & -10 \\ 2 & 21 \end{pmatrix} = A$

and

$$A \cdot I_2 = \begin{pmatrix} 1 & -10 \\ 2 & 21 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -10 \\ 2 & 21 \end{pmatrix} = A$$

 I_n is called the identity matrix because it is the identity element of matrix multiplication (like 1 is for multiplication of numbers).

Multiplication with the Identity Matrix

Whenever M is an $m \times n$ matrix, we have

$$I_m \cdot M = M$$
 and $M \cdot I_n = M$.

Note that when $m \neq n$, I_m and I_n are matrices of different dimensions. For example,

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad I_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

٠

Linear Systems

Matrix multiplication can be used to write a linear system in a simpler form. Consider the system

$$a_{11}x_1 + a_{21}x_2 + \ldots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m.$$

If we set

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$

Then the above system can be written as

$$AX = b_i$$

where we have to find X.

Linear Systems

Example Write the system

$$2x + 3y + 4z = 1$$
$$-x + 5y - 6z = 7$$

in matrix form.

Solution: This system can be written as AX = b, where

$$A = \begin{pmatrix} 2 & 3 & 4 \\ -1 & 5 & -6 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 7 \end{pmatrix}.$$

When we have an equation

$$ax = b$$

with $a, b \in \mathbb{R}$ and $a \neq 0$, then we can multiply the equation with a^{-1} (the inverse of a) and get the solution $x = \frac{b}{a}$. What about matrix equations of the form AX = b?

Let A be an $n \times n$ matrix. If there exists an $n \times n$ matrix B such that

$$AB = BA = I_n,$$

we say that B is the **inverse** matrix of A and we write $B = A^{-1}$:

$$A \cdot A^{-1} = A^{-1} \cdot A = I_n.$$

Not all square matrices have an inverse. If A has an inverse, A is called an **invertible** matrix. If A does not have an inverse, A is called a **singular** matrix.

If the inverse of A exists, it is unique.

Example
Let
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$
. We have
 $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \underbrace{\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}}_{=A^{-1}} = \underbrace{\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}}_{=A^{-1}} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2.$

The following properties hold:

- 1. If A is invertible, then $(A^{-1})^{-1} = A$.
- 2. If A,B are both invertible $n\times n$ matrices, then $A\cdot B$ is also invertible and

$$(AB)^{-1} = B^{-1} \cdot A^{-1}.$$

Proof:

1. We have $A \cdot A^{-1} = I_n$, and so, A must be the inverse of A^{-1} , so $A = (A^{-1})^{-1}$. 2.

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1}$$

= AI_nA^{-1}
= AA^{-1}
= I_n .

Example

Find the inverse of $A = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$.

Solution: We know that $AA^{-1} = I_2$.

$$\begin{pmatrix} 2 & 5\\ 1 & 3 \end{pmatrix} \begin{pmatrix} a & b\\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$
$$\implies \begin{pmatrix} 2a+5c & 2b+5d\\ a+3c & b+3d \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}.$$

This means

$$2a + 5c = 1, \quad 2b + 5d = 0$$

$$a + 3c = 0, \quad b + 3d = 1,$$

giving a = 3, c = -1, b = -5 and d = 2. Thus,

$$A^{-1} = \begin{pmatrix} 3 & -5\\ -1 & 2 \end{pmatrix}.$$