Linear Algebra

Matrix Multiplication

Elisabeth Köbis, elisabeth.kobis@ntnu.no

Multiplication of Matrices

First, let us remember the scalar product of two vectors. If $\vec{a}=\left(a_{1}, a_{2}\right)$, $\vec{b}=\left(b_{1}, b_{2}\right)$, then the scalar product of \vec{a} and \vec{b} (also called inner product or dual product) is

$$
\begin{gathered}
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2} \\
\text { E.g., if } \vec{a}=(2,1), \vec{b}=(-1,3) \text {, then } \vec{a} \cdot \vec{b}=2 \cdot(-1)+1 \cdot 3=1 .
\end{gathered}
$$

Multiplication of Matrices

The same definition of scalar product can be extended to n-dimensional vectors:
If $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \vec{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, then the scalar product of \vec{x} and \vec{y} is

$$
\vec{x} \cdot \vec{y}=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}=\sum_{i=1}^{n} x_{i} y_{i} .
$$

E.g., if $\vec{a}=(1,0,2,-1), \vec{b}=(2,-3,1,0)$, then $\vec{a} \cdot \vec{b}=1 \cdot 2+0+2 \cdot 1+0=4$.
Note that the scalar product is only defined for vectors of the same dimension.

Multiplication of Matrices

Suppose that A is an $m \times n$ matrix and B is an $n \times p$ matrix:

$$
A=\left(a_{i j}\right)_{i \leq m, j \leq n}, \quad B=\left(b_{i j}\right)_{i \leq n, j \leq p} .
$$

We define the product $A \cdot B$ to be the $m \times p$ matrix $A \cdot B=\left(c_{i j}\right)_{i \leq m, j \leq p}$, where

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{i n} b_{n j}
$$

(i.e., $c_{i j}$ is the scalar product of the i-th row of A with the j-th column of B).

Multiplication of Matrices

Example 1

Let

$$
A=\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 2
\end{array}\right) .
$$

Calculate $A \cdot B$.
A is a 2×2 matrix, B is a 2×3 matrix, so $A \cdot B$ will be a 2×3 matrix.

$$
A \cdot B=\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 2
\end{array}\right)=
$$

Multiplication of Matrices

Example 1

Let

$$
A=\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 2
\end{array}\right) .
$$

Calculate $A \cdot B$.
A is a 2×2 matrix, B is a 2×3 matrix, so $A \cdot B$ will be a 2×3 matrix.

$$
A \cdot B=\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 0 & 2 \\
1 & 1 & 2
\end{array}\right)=(2 \cdot 1+1 \cdot 1=3)
$$

Multiplication of Matrices

Example 1

Let

$$
A=\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 2
\end{array}\right) .
$$

Calculate $A \cdot B$.
A is a 2×2 matrix, B is a 2×3 matrix, so $A \cdot B$ will be a 2×3 matrix.

$$
A \cdot B=\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 2
\end{array}\right)=\left(\begin{array}{ll}
3 & 2 \cdot 0+1 \cdot 1=1
\end{array}\right)
$$

Multiplication of Matrices

Example 1

Let

$$
A=\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 2
\end{array}\right) .
$$

Calculate $A \cdot B$.
A is a 2×2 matrix, B is a 2×3 matrix, so $A \cdot B$ will be a 2×3 matrix.

$$
A \cdot B=\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
3 & 1 & 2 \cdot 2+1 \cdot 2=6
\end{array}\right)
$$

Multiplication of Matrices

Example 1

Let

$$
A=\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 2
\end{array}\right) .
$$

Calculate $A \cdot B$.
A is a 2×2 matrix, B is a 2×3 matrix, so $A \cdot B$ will be a 2×3 matrix.

$$
A \cdot B=\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 2
\end{array}\right)=\left(\begin{array}{ccc}
3 & 1 & 6 \\
1 \cdot 1+(-1) \cdot 1=0 &
\end{array}\right)
$$

Multiplication of Matrices

Example 1

Let

$$
A=\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 2
\end{array}\right) .
$$

Calculate $A \cdot B$.
A is a 2×2 matrix, B is a 2×3 matrix, so $A \cdot B$ will be a 2×3 matrix.

$$
A \cdot B=\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 2
\end{array}\right)=\left(\begin{array}{ccc}
3 & 1 & 6 \\
1 & 1 \cdot 0+(-1) \cdot 1=-1 &
\end{array}\right)
$$

Multiplication of Matrices

Example 1

Let

$$
A=\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 2
\end{array}\right) .
$$

Calculate $A \cdot B$.
A is a 2×2 matrix, B is a 2×3 matrix, so $A \cdot B$ will be a 2×3 matrix.

$$
A \cdot B=\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 2
\end{array}\right)=\left(\begin{array}{ccc}
3 & 1 & 6 \\
1 & -1 & 1 \cdot 2+(-1) \cdot 2=0
\end{array}\right)
$$

Multiplication of Matrices

Example 1

Let

$$
A=\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 2
\end{array}\right) .
$$

Calculate $A \cdot B$.
A is a 2×2 matrix, B is a 2×3 matrix, so $A \cdot B$ will be a 2×3 matrix.

$$
A \cdot B=\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 2
\end{array}\right)=\left(\begin{array}{ccc}
3 & 1 & 6 \\
1 & -1 & 0
\end{array}\right)
$$

Multiplication of Matrices

Example 2

Let

$$
A=\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 2
\end{array}\right) .
$$

What is $B \cdot A$?
B is $2 \times 3, A$ is 2×2, so the product $B \cdot A$ is not defined. Remember: We can only multiply an $m \times n$ matrix with an $n \times p$ matrix, and the product will be an $m \times p$ matrix.

Multiplication of Matrices

Example 3
Let

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 0 & 4
\end{array}\right), \quad B=\left(\begin{array}{cccc}
1 & 2 & 3 & -3 \\
0 & -1 & 4 & 0 \\
-1 & 0 & -2 & 1
\end{array}\right)
$$

What is $A \cdot B$?
A is $2 \times 3, B$ is 3×4, so the product $A \cdot B$ will be a 2×4 matrix.

$$
A \cdot B=\left(\begin{array}{cccc}
-2 & 0 & 5 & 0 \\
-5 & -2 & -11 & 7
\end{array}\right) .
$$

Multiplication of Matrices

Example 4

Let

$$
A=\left(\begin{array}{lll}
2 & 1 & -1
\end{array}\right), \quad B=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) .
$$

Find $A \cdot B$ and $B \cdot A$. Are these equal?
A is 1×3 (row vector), B is 3×1 (column vector), so the product $A \cdot B$ will be a 1×1 matrix (hence, a scalar) and the product $B \cdot A$ will be a 3×3 matrix. Hence, $A \cdot B$ and $B \cdot A$ cannot be equal.

$$
\begin{gathered}
A \cdot B=\left(\begin{array}{lll}
2 & 1 & -1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)=(1) . \\
B \cdot A=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) \cdot\left(\begin{array}{lll}
2 & 1 & -1
\end{array}\right)=\left(\begin{array}{ccc}
2 & 1 & -1 \\
-2 & -1 & 1 \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Multiplication of Matrices

Example 5

Let

$$
A=\left(\begin{array}{ll}
2 & -1 \\
4 & -2
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & -1 \\
2 & -2
\end{array}\right) .
$$

Find $A \cdot B$ and $B \cdot A$. Is $A \cdot B=B \cdot A$?

$$
\begin{gathered}
A \cdot B=\left(\begin{array}{ll}
2 & -1 \\
4 & -2
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & -1 \\
2 & -2
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=0_{2 \times 2} . \\
B \cdot A=\left(\begin{array}{ll}
1 & -1 \\
2 & -2
\end{array}\right) \cdot\left(\begin{array}{ll}
2 & -1 \\
4 & -2
\end{array}\right)=\left(\begin{array}{ll}
-2 & 1 \\
-4 & 2
\end{array}\right) .
\end{gathered}
$$

So, $A B \neq B A$.

Multiplication of Matrices

This last example shows the following:

1. When A, B are $n \times n$ (square) matrices, then $A B$ and $B A$ are not necessarily equal, i.e., matrix multiplication is not commutative (unlike multiplications of real numbers).
2. When a, b are real numbers and $a \cdot b=0$, then $a=0$ or $b=0$. This does not happen with matrix multiplication: $A \cdot B=0$ does not necessarily imply $A=0$ or $B=0$.

Multiplication of Matrices

The following properties hold whenever the products that are appearing are well-defined (i.e., if multiplication of the corresponding matrices is acceptable):

1. $(A+B) \cdot C=A \cdot C+B \cdot C$.
2. $A \cdot(B+C)=A \cdot B+A \cdot C$.
3. $A \cdot(B \cdot C)=(A \cdot B) \cdot C$.
4. $A \cdot 0=0 \cdot A=0$.

Multiplication of Matrices

When A is a square ($n \times n$) matrix, we can define the powers of A as follows:

$$
\begin{aligned}
A^{2} & =A \cdot A \\
A^{3} & =A^{2} \cdot A \\
\vdots & \\
A^{n+1} & =A^{n} \cdot A .
\end{aligned}
$$

E.g., if $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$, then

$$
\begin{gathered}
A^{2}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{cc}
7 & 10 \\
15 & 22
\end{array}\right), \\
A^{3}=\left(\begin{array}{cc}
7 & 10 \\
15 & 22
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{cc}
37 & 54 \\
81 & 118
\end{array}\right) .
\end{gathered}
$$

Identity Matrix

We define the $n \times n$ identity matrix to be

$$
I_{n}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right) .
$$

Multiplication with the Identity Matrix

Whenever A is an $n \times n$ matrix, we have

$$
A \cdot I_{n}=I_{n} \cdot A=A
$$

E.g., if $A=\left(\begin{array}{cc}1 & -10 \\ 2 & 21\end{array}\right)$, then

$$
I_{2} \cdot A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -10 \\
2 & 21
\end{array}\right)=\left(\begin{array}{cc}
1 & -10 \\
2 & 21
\end{array}\right)=A
$$

and

$$
A \cdot I_{2}=\left(\begin{array}{cc}
1 & -10 \\
2 & 21
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & -10 \\
2 & 21
\end{array}\right)=A
$$

I_{n} is called the identity matrix because it is the identity element of matrix multiplication (like 1 is for multiplication of numbers).

Multiplication with the Identity Matrix

Whenever M is an $m \times n$ matrix, we have

$$
I_{m} \cdot M=M \quad \text { and } \quad M \cdot I_{n}=M .
$$

Note that when $m \neq n, I_{m}$ and I_{n} are matrices of different dimensions. For example,

$$
I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad I_{4}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Linear Systems

Matrix multiplication can be used to write a linear system in a simpler form. Consider the system

$$
\begin{aligned}
a_{11} x_{1}+a_{21} x_{2}+\ldots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} & =b_{2} \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

If we set

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right), \quad X=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \quad b=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)
$$

Then the above system can be written as

$$
A X=b,
$$

where we have to find X.

Linear Systems

Example

Write the system

$$
\begin{array}{r}
2 x+3 y+4 z=1 \\
-x+5 y-6 z=7
\end{array}
$$

in matrix form.
Solution: This system can be written as $A X=b$, where

$$
A=\left(\begin{array}{ccc}
2 & 3 & 4 \\
-1 & 5 & -6
\end{array}\right), \quad X=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \quad b=\binom{1}{7} .
$$

Inverse Matrix

When we have an equation

$$
a x=b
$$

with $a, b \in \mathbb{R}$ and $a \neq 0$, then we can multiply the equation with a^{-1} (the inverse of a) and get the solution $x=\frac{b}{a}$. What about matrix equations of the form $A X=b$?
Let A be an $n \times n$ matrix. If there exists an $n \times n$ matrix B such that

$$
A B=B A=I_{n}
$$

we say that B is the inverse matrix of A and we write $B=A^{-1}$:

$$
A \cdot A^{-1}=A^{-1} \cdot A=I_{n}
$$

Inverse Matrix

Not all square matrices have an inverse. If A has an inverse, A is called an invertible matrix. If A does not have an inverse, A is called a singular matrix.
If the inverse of A exists, it is unique.
Example
Let $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. We have

$$
\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \underbrace{\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)}_{=A^{-1}}=\underbrace{\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)}_{=A^{-1}}\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2} .
$$

Inverse Matrix

The following properties hold:

1. If A is invertible, then $\left(A^{-1}\right)^{-1}=A$.
2. If A, B are both invertible $n \times n$ matrices, then $A \cdot B$ is also invertible and

$$
(A B)^{-1}=B^{-1} \cdot A^{-1} .
$$

Proof:

1. We have $A \cdot A^{-1}=I_{n}$, and so, A must be the inverse of A^{-1}, so $A=\left(A^{-1}\right)^{-1}$.
2.

$$
\begin{aligned}
(A B)\left(B^{-1} A^{-1}\right) & =A\left(B B^{-1}\right) A^{-1} \\
& =A I_{n} A^{-1} \\
& =A A^{-1} \\
& =I_{n} .
\end{aligned}
$$

Inverse Matrix

Example

Find the inverse of $A=\left(\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right)$.
Solution: We know that $A A^{-1}=I_{2}$.

$$
\begin{aligned}
& \left(\begin{array}{ll}
2 & 5 \\
1 & 3
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\Longrightarrow & \left(\begin{array}{cc}
2 a+5 c & 2 b+5 d \\
a+3 c & b+3 d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

This means

$$
\begin{aligned}
2 a+5 c & =1, & & 2 b+5 d=0 \\
a+3 c & =0, & & b+3 d=1,
\end{aligned}
$$

giving $a=3, c=-1, b=-5$ and $d=2$. Thus,

$$
A^{-1}=\left(\begin{array}{cc}
3 & -5 \\
-1 & 2
\end{array}\right)
$$

