Mathematical Methods B Spring 2022 Norwegian University of Science and Technology Department of Mathematical Sciences

Information: (b) "Linear approximation" refers to the "tangent plane", (b) the concept of a directional derivative will be topic of the lecture on March 15.

 $f(x,y) = \tan(x - 2y).$

 $f(x, y) = x \cdot e^y.$

10.3.6 Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for

10.3.41 Find $\frac{\partial^2 f}{\partial y \partial x}$ for

10.4.28 Find the linear approximation of

$$f(x,y) = \tan(2 \cdot x - 3 \cdot y^2)$$

at (0,0) and use it to approximate f(0.03, 0.05). Compare the approximation with the exact value f(0.03, 0.05).

10.5.3 Let
$$f(x,y) = \sqrt{x^2 + y^2}$$
 with $x(t) = t$ and $y(t) = \sin t$. Find the derivative $w'(\frac{\pi}{3})$ for $w(t) = f(x(t), y(t))$.

10.5.19 Find the gradient of

$$f(x,y) = \sqrt{x^3 - 3 \cdot x \cdot y} \,.$$

 $\fbox{10.5.28} Compute the directional derivative of$

$$f(x,y) = x^3 \cdot y^2$$
 at $(x_0,y_0) = (2,3)$ in the direction $\begin{pmatrix} -2\\ 1 \end{pmatrix}$.

10.5.35 In what direction does

$$f(x,y) = 3 \cdot x \cdot y - x^2$$

increase most rapidly at $(-1,1)^{\top}$?

Deadline: Sunday, March 20, 2022 (digitally as a single pdf-file via Blackboard)