Information: (b) "Linear approximation" refers to the "tangent plane", (b) the concept of a directional derivative will be topic of the lecture on March 15 .
10.3.6 Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for

$$
f(x, y)=\tan (x-2 y) .
$$

10.3.41 Find $\frac{\partial^{2} f}{\partial y \partial x}$ for

$$
f(x, y)=x \cdot \mathrm{e}^{y} .
$$

10.4.28 Find the linear approximation of

$$
f(x, y)=\tan \left(2 \cdot x-3 \cdot y^{2}\right)
$$

at $(0,0)$ and use it to approximate $f(0.03,0.05)$. Compare the approximation with the exact value $f(0.03,0.05)$.
10.5.3 Let $f(x, y)=\sqrt{x^{2}+y^{2}}$ with $x(t)=t$ and $y(t)=\sin t$. Find the derivative $w^{\prime}\left(\frac{\pi}{3}\right) ~$

$$
w(t)=f(x(t), y(t)) .
$$

10.5.19 Find the gradient of

$$
f(x, y)=\sqrt{x^{3}-3 \cdot x \cdot y} .
$$

10.5.28 Compute the directional derivative of

$$
f(x, y)=x^{3} \cdot y^{2}
$$

at $\left(x_{0}, y_{0}\right)=(2,3)$ in the direction $\binom{-2}{1}$.
10.5.35 In what direction does

$$
f(x, y)=3 \cdot x \cdot y-x^{2}
$$

increase most rapidly at $(-1,1)^{\top}$ ?

Deadline: Sunday, March 20, 2022 (digitally as a single pdf-file via Blackboard)

