1 Explain with your own words in tasks (a) and (b). You may also use drawings.
(a) What is an eigenvector?
(b) What is an eigenvalue?

2 Find eigenvectors and eigenvalues to the matrix

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right]
$$

3 Is $\boldsymbol{x}=\binom{-1}{2}$ an eigenvector of the matrix $\mathbf{A}=\left(\begin{array}{cc}1 & 1 \\ -2 & -2\end{array}\right)$? Why/why not?

4 Let \mathbf{A} be an $n \times n$ matrix, and $\boldsymbol{x} \in \mathbb{R}^{n}$ an eigenvector of \mathbf{A} with corresponding eigenvalue $\lambda \in \mathbb{R}$.

1. Which of the following statements are true, and which are false?
2. Why/why not?
(a) $\mathbf{A} \cdot \boldsymbol{x}=\lambda \cdot \mathbf{A}$
(b) $(\lambda \cdot \mathbf{I}-\mathbf{A}) \cdot \boldsymbol{x}=\mathbf{0}$
(c) $\mathbf{A} \cdot \boldsymbol{x}=\lambda \cdot \boldsymbol{x}$
(d) $\operatorname{det}(\lambda \cdot \mathbf{I}-\mathbf{A})=0$
(e) Multiplication with \boldsymbol{x} scales \mathbf{A} by a factor of λ
λ cannot be 0
(i) \boldsymbol{x} cannot be $\mathbf{0}$

5 Let \mathbf{A} be a 2×2-matrix and \boldsymbol{x} a two-dimensional vector. In the cases (a) to (g) below, answer the following questions:

1. Is \boldsymbol{x} an eigenvector of \mathbf{A} ?
2. Why/why not?
3. In case that \boldsymbol{x} is an eigenvector, what do you think is the corresponding eigenvalue $\lambda \in \mathbb{R}$?
(a)

(b)

(e)

(c)

6 Let

$$
\mathbf{A}=\left[\begin{array}{cc}
-1 & 1 \\
0 & 2
\end{array}\right]
$$

(a) Show that $\boldsymbol{u}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\boldsymbol{u}_{2}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ are eigenvectors of A and that \boldsymbol{u}_{1} and \boldsymbol{u}_{2} are linearly independent
(b) Represent $\boldsymbol{x}=\left[\begin{array}{c}1 \\ -3\end{array}\right]$ as a linear combination of \boldsymbol{u}_{1} and \boldsymbol{u}_{2}.
(c) Use the results from (a) and (b) for å to calculate $\mathbf{A}^{20} \boldsymbol{x}$.

Deadline Sunday February 27th (digitally as a single pdf-file via Blackboard)

