Norwegian University of Science and Technology Department of Mathematical Sciences MA0002 Mathematical Methods Spring 2022

Exercise set 6

1 Explain with your own words in tasks (a) and (b). You may also use drawings.

- (a) What is an eigenvector?
- (b) What is an eigenvalue?

2 Find eigenvectors and eigenvalues to the matrix

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}.$$

3 Is $\boldsymbol{x} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ an eigenvector of the matrix $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ -2 & -2 \end{pmatrix}$? Why/why not?

4 Let A be an $n \times n$ matrix, and $x \in \mathbb{R}^n$ an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$.

- 1. Which of the following statements are true, and which are false?
- 2. Why/why not?
- (a) $\mathbf{A} \cdot \boldsymbol{x} = \lambda \cdot \mathbf{A}$
- (b) $(\lambda \cdot \mathbf{I} \mathbf{A}) \cdot \boldsymbol{x} = \mathbf{0}$
- (c) $\mathbf{A} \cdot \boldsymbol{x} = \lambda \cdot \boldsymbol{x}$
- (d) $\det(\lambda \cdot \mathbf{I} \mathbf{A}) = 0$
- (e) Multiplication with \boldsymbol{x} scales \mathbf{A} by a factor of λ
- (f) Multiplication with **A** scales \boldsymbol{x} by a factor of λ
- (g) $\mathbf{A} \cdot \boldsymbol{x}$ cannot be $\mathbf{0}$
- (h) λ cannot be 0
- (i) \boldsymbol{x} cannot be $\boldsymbol{0}$

- **5** Let **A** be a 2×2 -matrix and \boldsymbol{x} a two-dimensional vector. In the cases (a) to (g) below, answer the following questions:
 - 1. Is \boldsymbol{x} an eigenvector of \mathbf{A} ?
 - 2. Why/why not?
 - 3. In case that \boldsymbol{x} is an eigenvector, what do you think is the corresponding eigenvalue $\lambda \in \mathbb{R}$?

6 Let

$$\mathbf{A} = \begin{bmatrix} -1 & 1 \\ 0 & 2 \end{bmatrix}.$$

- (a) Show that $\boldsymbol{u}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\boldsymbol{u}_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ are eigenvectors of A and that \boldsymbol{u}_1 and \boldsymbol{u}_2 are linearly independent
- (b) Represent $\boldsymbol{x} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ as a linear combination of \boldsymbol{u}_1 and \boldsymbol{u}_2 .
- (c) Use the results from (a) and (b) for a to calculate $\mathbf{A}^{20}\boldsymbol{x}$.

Deadline Sunday February 27th (digitally as a single pdf-file via Blackboard)