

- **9.1.18** Laboratory mice are fed with a mixture of two foods that contain two essential nutrients. Food 1 contains 3 units of nutrient A and 2 units of nutrient B per ounce; food 2 contains 4 units of nutrient A and 5 units of nutrient B per ounce.
 - (a) In what proportion should you mix the food if the mice require nutrients A and B in equal amounts?
 - (b) Assume now that the mice require nutrients A and B in the ratio 1:2. Is it possible to satisfy their dietary needs with the two foods available?
- **9.2.30** Suppose that **A** is an (l, p) matrix, **B** is an (m, q) matrix, and **C** is an (n, r) matrix. What can you say about l, m, n, p, q, and r if the products that follow are defined? State the size of the resulting matrix.
 - (a) $\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}$
 - (b) $\mathbf{A} \cdot \mathbf{B}^\top \cdot \mathbf{C}$
 - (c) $\mathbf{B} \cdot \mathbf{A} \cdot \mathbf{C}^{\top}$
 - (d) $\mathbf{A}^{\top} \cdot \mathbf{C} \cdot \mathbf{B}^{\top}$
 - 3 Let $A = \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix}$. (a) Find AB.
 - (b) Find BA.

4 Given the matrix

$$\mathbf{A} = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{22} \end{pmatrix} \,.$$

Assume that $a_{1,1} \cdot a_{2,2} - a_{1,2} \cdot a_{2,1} \neq 0$.

- (a) What is the inverse \mathbf{A}^{-1} ?
- (b) What can you say about **A** when $a_{1,1} \cdot a_{2,2} a_{1,2} \cdot a_{2,1} = 0$?

5 Let

$$B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

- (a) Calculate B^2 , B^3 , B^4 og B^5 .
- (b) What can you say about B^k when (i) k is an even number (ii) k is an odd number?
- 6 (a) Let

$$\mathbf{A} = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

Find the values $\mathbf{A} \cdot \mathbf{e}_1$, $\mathbf{A} \cdot \mathbf{e}_2$, when $\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ are the two unit vectors in \mathbb{R}^2 .

- (b) What does the function $f: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \mathbf{A} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ (dvs. $f(x_1, x_2) = \mathbf{A} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$) do geometrically to a vector $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$?
- (c) Find a matrix $\mathbf{B} \in \mathbb{R}^{2 \times 2}$ such that

$$g: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \mathbf{B} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

corresponds to a rotation of $\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ about the angle 30°.

Hint: • Consider part (a): The matrix must image the unit vector to their images.

• The following holds $\cos 45^\circ = \sin 45^\circ$. Search for "rotation matrix".

Deadline: Sunday, February 13th (digitally as one pdf-file via Blackboard)