Exercise: Find the global maximum and global minimum of

$$
f(x, y)=x^{2}+y^{2}-2 x+4
$$

on the disc $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leqslant 4\right\}$

- D is closed o bounded and f is continuous on D. so f has a global max. and a global minimum on D.

We find the potential extrema of $f(x, y)$ in the interior of D.

$$
\begin{aligned}
\nabla f(x, y) & =\left[\begin{array}{l}
f_{x}(x, y) \\
f_{y}(x, y)
\end{array}\right]=\left[\begin{array}{c}
2 x-2 \\
2 y
\end{array}\right] \\
\nabla f(x, y) & =0 \Rightarrow\left\{\begin{array} { c }
{ 2 x - 2 = 0 } \\
{ 2 y = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=1 \\
y=0
\end{array}\right.\right. \\
f(1,0) & =1^{2}-2+4=3
\end{aligned}
$$

We now find the values of f on the boundary of D, which is the circle

$$
x^{2}+y^{2}=4
$$

$$
\begin{aligned}
& x=2 \cos \theta \quad x^{2}+y^{2}=4 \cos ^{2} \theta+4 \sin ^{2} \theta=4\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=4(x, y) \\
& y=2 \sin \theta \\
& (x, y) \text { ? } \\
& \text { We find a parametrisation of }
\end{aligned}
$$ the points on the boundary of D.

Points (x, y) with $x^{2}+y^{2}=4 \quad \Rightarrow x=2(0, \theta$ hove coordinates of the form

$$
\begin{cases}x=2 \cos \theta, \quad 0 \leqslant \theta<2 \pi . & \sin \theta=\frac{y}{2} \Rightarrow \\
y=2 \sin \theta & \begin{array}{ll}
\theta=0: x=2, y=0 & y=2 \sin \theta \\
& =\frac{\pi}{2}: x=\sqrt{2}, y=\sqrt{2}
\end{array}\end{cases}
$$

Thus on the boundan's of D,

$$
\begin{aligned}
f(x, y) & =f(2 \cos \theta, 2 \sin \theta) \\
& =4 \cos ^{2} \theta+4 \sin ^{2} \theta-4 \cos \theta+4 \\
& =8-4 \cos \theta \\
& =4(2-\cos \theta) \\
& \equiv g(\theta), \quad 0 \leqslant \theta<2 r .
\end{aligned}
$$

$g(\theta)$ is maximum when

$$
\cos \theta=-1 \Leftrightarrow \theta=\Pi
$$

and then it is equal to $g(\Omega)=12$
$g(\theta)$ is minimum when

$$
\cos \theta=1 \Leftrightarrow \theta=0
$$

and then it is equal to $g(0)=4$.
f has a global min. on $(1,0)$, which is 3 .
f has a global max. on $(-2,0)$, which is 12 .

Exercise: Find three non-negatile numbers whose sum is equal to 90 such that their product is maximum.

- Let $x, y, z \geqslant 0$ be three non-negative numbers. Because their sum is equal to 90 ,

$$
x+y+z=90 \Rightarrow z=90-x-y
$$

Their product is

$$
x y z=x y(90-x-y)
$$

We need to maximize the function

$$
f(x, y)=x y(90-x-y)
$$

with $x \geqslant 0, y \geqslant 0$
and $\quad z \geqslant 0 \Rightarrow 90-x-y \geqslant 0$

$$
\Rightarrow x+y \leqslant 90 \uparrow \uparrow y
$$

We find potential global extremum points in the interior of the domain of f.

$$
\begin{aligned}
& f(x, y)=x y(90-x-y)=90 x y-x^{2} y-x y^{2} \\
& \nabla f(x, y)=\left[\begin{array}{l}
f_{x}(x, y) \\
f_{y}(x, y)
\end{array}\right]=\left[\begin{array}{l}
90 y-2 x y-y^{2} \\
90 x-2 x y-x^{2}
\end{array}\right] \\
& \nabla f(x, y)=0 \Rightarrow\left\{\begin{array}{l}
90 y-2 x y-y^{2}=0 \\
90 x-2 x y-x^{2}=0
\end{array}\right. \\
& \quad \Rightarrow\left\{\begin{array}{l}
(90-2 x-y) \cdot y=0 \\
(90-2 y-x) \cdot x=0
\end{array}\right.
\end{aligned}
$$

We are looking for potential extremum point) in the interior, so $x>0$ and $y>0$.

So the system gives

$$
\left\{\begin{array} { l }
{ 9 0 - 2 x - y = 0 } \\
{ 9 0 - 2 y - x = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
2 x+y=90 \\
x+2 y=90
\end{array}\right.\right.
$$

with solution $(x, y)=(30,30)$.

$$
f(30,30)=30 \cdot 30 \cdot(90-30-30)=27,000
$$

On any point (x, y) on the boundary of the domain of f, we have

$$
f(x, y)=0
$$

Hence, f hiss a global mols, at $(30,30)$ which is equal to

$$
f(30,30)=27,000
$$

The product of the three numbers is maximum when

$$
x=30, \quad y=30, \quad z=30
$$

- EXTREMA UNDER CONSTRAINTS

So far we have minimised /maximised functions $f(x, y)$ on their domains.
sometimes we need to find extrema r of $f(x, y)$ under some additional constraint.
E.g. We want to find the min and max. of $f(x, y)=x^{3}-x y+y^{2}$ under the constraint that

$$
x^{2}+y^{2}=1
$$

- We want to find the maximum o minim of $f(x, y)=x y+2 x^{2} y^{2}$ under the constraint that

$$
(x-1)^{2}+2(y-2)^{2}=2
$$

In general, we mont to find the extrema of the function $f(x, y)$ under the constraint

$$
g(x, y)=0
$$

THEOREM (Lagrange): Assume that fig have continuous first -order partial derhetives and $f(x, y)$ has an extremum at $\left(x_{0}, y_{0}\right)$ subject to the constrount $g(x, y)=0$.

If $\nabla g\left(x_{0}, y_{0}\right) \neq 0$ then there exists some λ such that

$$
\nabla f\left(x_{0}, y_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}\right)
$$

This suggests that when ne nuint to optimise $f(x, y)$ subject to the constraint $g(x, y)=0$, we have to solve the system:

$$
\left\{\begin{array}{l}
g(x, y)=0 \\
\nabla f(x, y)=\lambda \cdot \nabla g(x, y)
\end{array}\right.
$$

The number λ is called a Lagrange multiplier.

Example: Find all extrema of

$$
f(x, y)=e^{-x y}
$$

subject to the constraint $x^{2}+4 y^{2}=1$.

- The constraint can be written us $g(x, y)=0$, where

$$
g(x, y)=x^{2}+4 y^{2}-1
$$

We solve the system

$$
\begin{gather*}
\left\{\begin{array}{c}
g(x, y)=0 \\
\nabla f(x, y)=\lambda \nabla g(x, y)
\end{array}\right. \tag{*}\\
\nabla f(x, y)=\left[\begin{array}{l}
-y e^{-x y} \\
-x e^{-x y}
\end{array}\right], \quad \nabla g(x, y)=\left[\begin{array}{l}
2 x \\
8 y
\end{array}\right] \\
(*) \Rightarrow\left\{\left.\begin{array}{l|l}
x^{2}+4 y^{2}=1 \\
-y e^{-x y}=2 \lambda x & x^{2}+4 y^{2}=1 \\
-x e^{-x y}=8 \lambda y
\end{array} \right\rvert\, \begin{array}{l}
-y^{2} e^{-x y}=8 \lambda x y \\
-x y \\
-x \lambda x y
\end{array}\right. \\
\Rightarrow\left\{\begin{array}{l|l}
x^{2}+4 y^{2}=1 \\
x^{2} e^{-x y}=4 y^{2} e^{-x y} & x^{2}+4 y^{2}=1 \\
x^{2}=4 y^{2}
\end{array}\right.
\end{gather*}
$$

$$
\begin{aligned}
& f(x, y)=e^{-x y} \\
& \Rightarrow\left\{\begin{array}{l|l|l}
2 x^{2}=1 & x^{2}=1 / 2 & x=\frac{\sqrt{2}}{2} \text { or } x=-\frac{\sqrt{2}}{2} \\
x^{2}=4 y^{2} & y^{2}=1 / 8 & y=\frac{\sqrt{2}}{4} \text { or } y=-\frac{\sqrt{2}}{4} .
\end{array}\right.
\end{aligned}
$$

The system has 4 solutions:

$$
(x, y)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{4}\right),\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{4}\right),\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{4}\right) \text { and }\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{4}\right) \text {. }
$$

We have to find the values of $f(x, y)$ on all these points.

$$
\begin{aligned}
& f\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{4}\right)=f\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{4}\right)=e^{-1 / 4} \\
& f\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{4}\right)=f\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{4}\right)=e^{1 / 4}
\end{aligned}
$$

The maximum value of $f(x, y)$ subject to the constraint $x^{2}+4 y^{2}=1$ is equal to $e^{1 / 4}$.
The minimum value of $f(x, y)$ subject to the constraint $x^{2}+4 y^{2}=1$ is equal to $e^{-1 / 4}$.

Exercise: Among all positive numbers with product equal to 1 , find those whose sum is minimum.
Of course we could sony that

$$
x y=1 \Rightarrow y=\frac{1}{x}
$$

and the sum of the two numbers is

$$
x+y=x+\frac{1}{x}
$$

So he need to find the minimum of

$$
h(x)=x+\frac{1}{x}, \quad x>0
$$

But instead he use Lagrange multipliers.
We want to minimize

$$
f(x, y)=x+y, \quad x, y>0
$$

subject to the constraint $x y=1$. Set

$$
g(x, y)=x y-1
$$

