First we find the solution mathematically. (similar to y' = 2(y-1)(y+2)). $\frac{dN}{dt} = \Gamma N \left(1 - \frac{N}{k} \right) \Longrightarrow$ $\int \frac{dN}{N(1-\frac{N}{K})} = \int r dt \implies$. . . $N(t) = \frac{K}{1 + \left(\frac{K}{N_{b}} - 1\right)e^{-rt}}$ We now proceed to the explanation of the logistic equation is a growth model. For the solution me found, lim N(t) = K. ナンの K is called the <u>carrying capacity</u> of the population.

We see that: •when No>K, the population decreases asymptotically towards K. •when No<K, the population increases towards the value K. when No = K, the population remains constant and equal to K. (This corresponds to the constant solution NLL) = K of the DE) • when No = 0, then the population remains equal to 0 (there is nothing to reproduce)

Solution of the logistic DE with Noto. $\frac{dN}{dt} = rN(1-\frac{N}{K})$. The function N(t) = 0is a constant solution. What does the logistic equation $\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$ imply about the population growth? According to it, the per capital growth rate $\frac{dN/dt}{N} = \Gamma\left(1 - \frac{N}{K}\right)$ is not constant, but depends on the "density" N. To be more specific, K $\frac{dN/dt}{N}$ is proportional to $1 - \frac{N}{K}$. N per cupita growth, rate <u>dN/J</u> The bigger the "density" is, the smaller the per capita growth rate gets. $\frac{1}{density}$ * Compare and contrast with the exponential grath model, where the per capital growth rate is constant. $\frac{dN_{dt}}{N} = \tau \left(1 - \frac{N}{K}\right)$

• EQUILIBRIA AND STABILITY
The DE for exp. growth
$$\frac{4}{44} = rN$$
,
the logistic eq. $\frac{dN}{44} = rN(1 - \frac{N}{K})$,
the von Bertalannfy DE are all examples
of autonomous DE's:

$$\frac{dy}{dt} = g(y) \qquad (*)$$

Consider an autonomous DE of the form (*).
We say that the constant function

$$y(t) = y$$

is a point equilibrium (or simply equi-
librium) of the DE (*) if
 $g(\hat{y}) = 0$.

Example: Find the point equilibria of
the DE
$$y' = 2(y+1)(y-2)$$
.
• This is a DE of the form $y'=g(y)$
with $g(y) = 2(y+1)(y-2)$.

In order to find the point equilibria
of the DE we solve

$$g(y) = 0 \iff 2(y+1)(y-2) = 0$$

 $\iff y = -1$ OR $y=2$.
The equilibria are the two functions
 $y_1(t) = -1$ and $y_2(t) = 2$.
REMARK: Here \hat{y} is only a symbol.
We could have said that the
function
 $y(t) = c_0$
is an equilibrium if and only if
 $g(c_0) = 0$.
Why are these functions called equilibria?
If we solve the DE $y' = g(y)$
with initial condition $y = \hat{y}$
(where \hat{y} is an equilibrium, then
ue find the constant solution $y = \hat{y}$.
Indeed, at time 0 the quantity y is \hat{y}
and its growth rate is $\frac{dy}{dy} = g(\hat{y}) = 0$

Let us return to the logistic equation

$$\frac{dN}{dT} = r N \left(1 - \frac{N}{K}\right).$$
This is an autonomous DE $y' = g(y)$
with
 $g(y) = r y \left(1 - \frac{y}{K}\right).$
Equilibria:
 $g(y) = 0 \Leftrightarrow y = 0$ or $y = K.$
The point equilibria are N=0 and N=K.
We have seen that if the initial
population is No=0 or No=K, then
the population will remain constant.
Example: Find the equilibria of the DE
 $y' = (y^2+1)y.$
 $g(y) = 0 \Leftrightarrow y = 0.$
So the point equilibrium of the DE is
 $y(t) = 0.$

interested in the We are stability of point equilibria of the DE y' = g(y).

Assume \hat{y} is an equilibrium of y'=gly). • If $g'(\hat{y}) < 0$, then the equilibrium \hat{y} is called locally stable.

• If $g'(\hat{y}) > 0$, then the equilibrium \hat{y} is called unstable.

If $y(0) = \hat{y}$, the solution of the DE will be $y(t) = \hat{y}$. What happens to the solution of the DE if we change the initial condition to $y(0) = \hat{y} + \delta$ (where δ is a small number)? - When the equilibrium \hat{y} is locally stable, the new solution y(t) will satisfy $\lim_{t \to \infty} y(t) = \hat{y}$. - When the equilibrium ŷ is unstable, the new solution will not tend towards ŷ.

Examples: (i) Consider the DE
$$\frac{dy}{dt} = y(y+1)$$
.
What die the equilibria of this DE?
Classify them according to stability.
• This is a DE $\frac{dy}{dt} = g(y)$, with
 $g(y) = y(y+1)$.
We find the equilibria:
 $g(y) = 0 \iff y(y+1) = 0$
 $\iff y=0$ OR $y=-1$.
Equilibria: $y_1(t)=0$ and $y_2(t)=-1$.
 $g'(y) = (y^2+y)' = 2y+1$.
 $g'(0) = 1 > 0$, so $y_1=0$ is
an unstable point eq.
 $g'(-1) = -1 < 0$, so $y_2 = -1$ is a
locally stable point
equilibrium.

(ii) Find the stability of the equilibria of
the logistic equation

$$\frac{dN}{d\tau} = rN(1 - \frac{N}{K})$$
.
Explain what stability means for the
Population N(t).
 $\frac{dN}{d\tau} = g(N)$ where $g(N) = rN(1 - \frac{N}{K})$.
 $g(N) = D \Leftrightarrow N = 0$ or $N = K$.
 $g'(N) = T(1 - \frac{N}{K}) - \frac{rN}{K}$
 $= r - \frac{2rN}{K}$.
 $g'(0) = r > 0$: $N = 0$ is an unstable eq.
 $g'(K) = -r < 0$: $N = K$ is a locally stable eq.
When we perturb the initial condition $N_0 = 0$
by a small quantity, the population $N(t)$
will not evolve towards the direction of returning
to 0.
 $K = \frac{K}{K}$.

On the contrary, if we perturb the initial condition $N_0 = K$, the population will try to return to K. K No NJ=K A way to think of locally stable and unstable equilibrium points: locally stable equilibrium unstable equilibrium

The stability of equilibrium points can also be tourd graphically. for the autonomous $DE \frac{dy}{dy} = gly$; · We plot the graph of g(y) 9(y) ->y · The equilibria of the DE die the points of intersection of the graph of g(y) with the horizontal axis (solutions of gly)=0) In the example above, they are $y=y_1$ & $y=y_2$. If the function gly) is increasing near ŷ, then ŷ is unstable.
 If gly) is decreasing near ŷ, then ŷ is locally stable. In the example, y₁ is locally stable while y₂ is unstable. (see Example 3, page 412).

· THE ALLEE EFFECT

Some populations have obstades in reproduction when their numbers are small, because of lack of suitable mates.

A growth model that takes this fact into account:

$$\begin{cases} \frac{dN}{d\tau} = r N(N-a)\left(1 - \frac{N}{K}\right) \\ N(o) = N_0 \end{cases}$$

a, K, r >0 : positive constants O<a< K by assumption

K: the carrying capacity a: this constant is the treshold value below which the growth nate becomes negative.