Or. 2, 8.1.34: Solve the D.E.

$$
\frac{d y}{d x}=(3-y)(2+y)
$$

(This is a separable DE, ie. it has the form

$$
y^{\prime}=g(y)
$$

We hove to divide by $(3-y)(2+y)$.

$$
(3-y)(2+y)=0 \Leftrightarrow y=3 \text { or } y=-2
$$

So the constant functions

$$
y_{1}(x)=3 \quad \text { and } y_{2}(x)=-2
$$

ore solutions of the $D E$.
When $(3-y)(2+y) \neq 0$,

$$
\begin{aligned}
\frac{d y}{d x} & =(3-y)(2+y) \Rightarrow \frac{d y}{(3-y)(2+y)}=d x \\
& \Rightarrow \int \frac{d y}{(3-y)(2+y)}=\int d x \quad(*)
\end{aligned}
$$

We have to calculate $\int \frac{d y}{(3-y)(2+y)}$.

We look for coefficients $A, B \in \mathbb{R}$ such that

$$
\begin{aligned}
& \frac{1}{(3-y)(2+y)}=\frac{A}{3-y}+\frac{B}{2+y} \Rightarrow \\
& A(2+y)+B(3-y)=1 \Rightarrow \\
& (A-B) y+(2 A+3 B)=1, \text { for all } y \in \mathbb{R} .
\end{aligned}
$$

So

$$
\begin{array}{r|r}
A-B=0 & A=\frac{1}{5} \\
2 A+3 B=1 & B=\frac{1}{5}
\end{array}
$$

Thus

$$
\frac{1}{(3-y)(2+y)}=\frac{1}{5}\left(\frac{1}{3-y}+\frac{1}{2+y}\right)
$$

$$
\begin{aligned}
(*) & \Rightarrow \frac{1}{5} \int \frac{d y}{3-y}+\frac{1}{5} \int \frac{d y}{2+y}=\int d x \\
& \Rightarrow \frac{1}{5} \ln |2+y|-\frac{1}{5} \ln |3-y|=x+c \\
& \Rightarrow \frac{1}{5} \ln \left|\frac{2+y}{3-y}\right|=x+c
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{1}{5} \ln \left|\frac{2+y}{3-y}\right|=x+c \\
& \Rightarrow \ln \left|\frac{2+y}{3-y}\right|=5 x+c, c \in \mathbb{R} \text { constant } \\
& \begin{aligned}
\Rightarrow\left|\frac{2+y}{3-y}\right| & =e^{5 x+c}=e^{c} \cdot e^{5 x} \\
& =C e^{5 x}, C>0 \text { constant } \\
\Rightarrow \frac{2+y}{3-y} & = \pm G e^{5 x}, C>0 \text { constant } \\
\Rightarrow \frac{2+y}{3-y} & =K e^{5 x}, \quad K \neq 0 \text { constant }
\end{aligned}
\end{aligned}
$$

Solving for y we get

$$
\begin{aligned}
& 2+y=3 K e^{5 x}-K e^{5 x} y \Rightarrow \\
&\left(1+K e^{5 x}\right) y=3 K e^{5 x}-2 \Rightarrow \\
& y(x)=\frac{3 K e^{5 x}-2}{K e^{5 x}+1}, K \neq 0 \text { constant. }
\end{aligned}
$$

Dv.4, 8.2.5: Logistic equation inner growth rate is $r=1.5$ carrying capacity: $K=100$
(d) Find the $D E$
(b) Find the equilibrial and their stability.

The logistic equation is

$$
\frac{d N(t)}{d t}=r N(t) \cdot\left(1-\frac{N(t)}{k}\right)
$$

where $r>0$ is the intrinsic growth rate and $k>0$ is the carrying capscity of the population.
Therefore

$$
\frac{d N}{d t}=\frac{3}{2} N\left(1-\frac{N}{200}\right)
$$

We set

$$
\begin{aligned}
g(N) & =\frac{3}{2} N\left(1-\frac{N}{200}\right) \\
& =\frac{3 N}{2}-\frac{3 N^{2}}{200}
\end{aligned}
$$

We solve $g(N)=0 \Rightarrow$

$$
N=0 \text { or } N=100
$$

The equilibria are $N=O$ and $N=100$.

$$
g^{\prime}(N)=\frac{3}{2}-\frac{3 N}{100}
$$

$g^{\prime}(0)=\frac{3}{2}>0$, so $N=0$ is unstable.

$$
g^{\prime}(100)=\frac{3}{2}-\frac{3 \cdot 100}{100}=-\frac{3}{2}<0
$$

so $N=100$ is locally stable.
(c) Solve the DE you wore in (d) when the population at time O is equal to $N(O)=60$.

$$
\begin{aligned}
& \frac{d N}{d t}=\frac{3}{2} N\left(1-\frac{N}{100}\right) \Rightarrow \\
& \frac{d N}{d t}=\frac{3}{200} N(100-N) \Rightarrow \\
& \int \frac{d N}{N(100-N)}=\int \frac{3}{200} d t \Rightarrow\binom{\text { partial fraction }}{\text { deompos. }} \Rightarrow\left(\begin{array}{c}
\text { find the } \\
\text { conhtsint by } \\
N(0)=60
\end{array}\right) .
\end{aligned}
$$

QU. 7 (Exam 2019 5., OPP. 2):
3 age groups: $0-, 1-, 2-$ year olds. First year of life: no offspring. $3 / 4$ survive the first year of life. The 1-y.0. have on average 5 cubs. One third survives the and year of life.
(a) Find the Leslie matrix L that describes this population?
(b) L has an eigenvalue with eigenv. $\left[\begin{array}{c}16 \\ 6 \\ 1\end{array}\right]$. Find this eigenvalue.
(c) If the begin with $80-30-5$ how many years does it take for the population to become $5 x(t)$ in $|t| a l$ value?
d) Find the evolution of the population.

SOLUTION
a) L is going to be a 3×3 matrix because there exist 3 age groups.

$$
L=\left[\begin{array}{ccc}
0 & 5 & 2 \\
3 / 4 & 0 & 0 \\
0 & 1 / 3 & 0
\end{array}\right]
$$

* Conversely, if we were given we can deduce the information given by the exercise.
(b) $\left[\begin{array}{ccc}0 & 5 & 2 \\ 3 / 4 & 0 & 0 \\ 0 & 2 / 3 & 0\end{array}\right]\left[\begin{array}{c}16 \\ 6 \\ 1\end{array}\right]=\left[\begin{array}{c}32 \\ 12 \\ 2\end{array}\right]=2\left[\begin{array}{c}16 \\ 6 \\ 1\end{array}\right]$
so the corresponding eigenvalue is $\lambda=2$.
(c) The population at time O is

$$
N(0)=\left[\begin{array}{c}
80 \\
30 \\
5
\end{array}\right]
$$

We know that the population at time $t \geqslant 1$ is going to be

$$
N(t)=L^{t} N(0)
$$

We observe that

$$
\left[\begin{array}{c}
80 \\
30 \\
5
\end{array}\right]=\left[\begin{array}{c}
5 \cdot 16 \\
5 \cdot 6 \\
5 \cdot 1
\end{array}\right]=5\left[\begin{array}{c}
16 \\
6 \\
1
\end{array}\right]
$$

So $N(0)$ is an eigenvector corresponding to the eigenvalue $\lambda=2$.

* N(O) is an eigenvector corresponding to $\lambda=2$ because it is equal to

$$
N(0)=5 v, \text { with } v=\left[\begin{array}{c}
16 \\
6 \\
1
\end{array}\right]
$$

We have found that V is an eigenvector corresponding to $\lambda=2$, and thus

$$
\begin{aligned}
L \cdot N(0)=L \cdot(5 v) & =5 \cdot i v \\
& =5 \cdot(2 v) \\
& =2 \cdot(5 v) \\
& =2 N(0)
\end{aligned}
$$

Therefore $L^{t} N(0)=\lambda^{t} N(0)=2^{t} N(0)$. So in order for the population to be at least five times its initial value, he need

$$
2^{t} \geqslant 5 \Rightarrow t \geqslant 3
$$

So at least 3 years have to pass.
(d) We know that if v is the eigenvector corresponding to the bigger eigenvalue λ of L, then:

- V is a stable age distribution (the percentages of individuals in each age group will converge to the ones in VJ
- λ is the growth parameter of the population.
Here we have to find all engenvalues of L.

$$
\begin{aligned}
& \operatorname{det}(\lambda I-L)=\left|\begin{array}{ccc}
\lambda & -5 & -2 \\
-3 / 4 & \lambda & 0 \\
0 & -1 / 3 & \lambda
\end{array}\right| \\
& \quad=\lambda\left|\begin{array}{cc}
\lambda & 0 \\
-1 / 3 & \lambda
\end{array}\right|+5\left|\begin{array}{cc}
-3 / 4 & 0 \\
0 & \lambda
\end{array}\right|-2\left|\begin{array}{cc}
-3 / 4 & \lambda \\
0 & -1 / 3
\end{array}\right| \\
& \quad=\lambda\left(\lambda^{2}-0\right)-5 \cdot \frac{3 \lambda}{4}-2 \cdot \frac{3}{4} \cdot \frac{1}{3} \\
& \quad=\lambda^{3}-\frac{15 \lambda}{4}-\frac{1}{2}
\end{aligned}
$$

$$
=\lambda^{3}-\frac{15 \lambda}{4}-\frac{1}{2}
$$

To find all eigenvalues, he need to Solve

$$
\operatorname{det}(\lambda I-L)=0 \Leftrightarrow \lambda^{3}-\frac{15 \lambda}{4}-\frac{1}{2}=0
$$

We know that $\lambda=2$ is a solution, so, the polynomial $\lambda-2$ divides

$$
\begin{gathered}
\left.\frac{\lambda^{3}-\frac{15 \lambda}{4}-\frac{1}{2}}{\lambda^{3}+0 \lambda^{2}-\frac{15}{4} \lambda-\frac{1}{2}} \right\rvert\, \begin{array}{c}
\lambda-2 \\
2 \lambda^{2}+0 \lambda+0
\end{array} \\
\frac{2 \lambda^{2}-\frac{15}{4} \lambda-\frac{1}{2}}{\frac{2 \lambda^{2}-\frac{1}{4} \lambda}{\frac{1}{4} \lambda-\frac{1}{2}}} \begin{array}{c}
\frac{\frac{1}{4} \lambda-\frac{1}{2}}{0}
\end{array} . \frac{1}{0}
\end{gathered}
$$

So $\lambda^{3}-\frac{15 \lambda}{4}-\frac{1}{2}=(\lambda-2)\left(\lambda^{2}+2 \lambda+\frac{1}{4}\right)$
and

$$
\begin{aligned}
& \lambda^{3}-\frac{15 \lambda}{4}-\frac{1}{2}=0 \Leftrightarrow \\
& (\lambda-2)\left(\lambda^{2}+2 \lambda+\frac{1}{4}\right)=0 \Leftrightarrow \\
& \lambda=2 \quad \text { or } \quad \lambda^{2}+2 \lambda+\frac{1}{4}=0 \\
& \quad \lambda=-1-\frac{\sqrt{3}}{2} \quad \text { or } \lambda=-1+\frac{\sqrt{3}}{2} .
\end{aligned}
$$

So the bigger eigenvalue is $\lambda=2$ and the Corresponging eigenvector

$$
V=\left[\begin{array}{c}
16 \\
6 \\
1
\end{array}\right]
$$

is a stable age distribution.
So in the long un, the population will consist of approximately $\frac{16}{23} \cong 69.57 \% \quad 0 \sim$ year olds,
$\frac{6}{23} \cong 26.07 \%$ 1-year old,
and

$$
\frac{1}{6} \cong 16,66 \% \quad 2 \text {-year olds. }
$$

Ov. 5, 9.2.21: Let $A=\left[\begin{array}{cc}-1 & 0 \\ 1 & 2\end{array}\right], B=\left[\begin{array}{cc}2 & 3 \\ -1 & 1\end{array}\right]$.
(a) $A B=\left[\begin{array}{cc}-1 & 0 \\ 1 & 2\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}-2 & -3 \\ 0 & 5\end{array}\right]$.
(b) $B A=\left[\begin{array}{cc}2 & 3 \\ -1 & 1\end{array}\right]\left[\begin{array}{cc}-1 & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 6 \\ 2 & 2\end{array}\right]$
(So $A B \neq B A)$.
Qv.5, 9.2.15: Find the transpose of $A=\left[\begin{array}{ccc}-1 & 0 & 3 \\ 2 & 1 & -4\end{array}\right]$

$$
A^{\top}=\left[\begin{array}{cc}
-1 & 2 \\
0 & 1 \\
3 & -4
\end{array}\right]
$$

Or. 5 9.1.6: Find the solutions of

$$
\left\{\begin{array}{r}
-2 x+3 y=5 \\
a x-y=y
\end{array}\right.
$$

with respect to a.
for which values of a do there exist zero sol's, a unique sol., inf. many sol's?

$$
\begin{gathered}
\left\{\begin{array}{c|c}
-2 x+3 y=5 \\
a x-2 y=0
\end{array} \left\lvert\, \begin{array}{c}
-2 x+\frac{3 a}{2} x=5 \\
\left\{=\frac{a}{2} x\right.
\end{array}\right.\right. \\
\left\{\begin{array}{c}
\left(\frac{3 a}{2}-2\right) x=5 \\
y=\frac{a}{2} x
\end{array}\right.
\end{gathered}
$$

We have $\frac{3 a}{2}-2 \neq 0 \Leftrightarrow a \neq \frac{4}{3}$.

- When $a \neq \frac{4}{3}$, we have

$$
x=\frac{5}{\frac{3 a}{2}-2}=\frac{10}{3 a-4}
$$

and $\quad y=\frac{a}{2} \cdot \frac{10}{3 a-4}=\frac{10 a}{6 a-8}$
The system has unique solution.

- When $a=\frac{4}{3}$, the system is written as $\left\{\begin{array}{l}0=5 \\ y=\frac{2 x}{3}\end{array}\right.$
which has no solutions.

