$\binom{4}{1} = 2\binom{4}{1} + \binom{7}{3}$

$$= \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \frac{1}{3+2} \begin{bmatrix} 3-2 \\ 1 \end{bmatrix} \begin{bmatrix} 4 \\ -1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 10 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

So $\alpha_1 = 2$ and $\alpha_2 = 1$. Therefore $v = 2 X_1 + X_9$ We now find A¹⁰V. $A^{10}V = A^{10}(2X_1 + X_2)$ $= 2 \cdot A^{10} X_1 + A^{10} X_2$ $= 2 \cdot \lambda_1^{10} X_1 + \lambda_2^{10} X_2$ $= 2 \cdot (-1)^{10} X_1 + 4^{10} X_2$ $= 4^{10} \begin{bmatrix} 2 \\ 3 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ $= \begin{bmatrix} 2 \cdot 4^{10} + 1 \\ 3 \cdot 4^{10} - 2 \end{bmatrix}$.

Eigenvector for
$$\lambda_1 = -1$$
:

$$A X = -X \implies \begin{bmatrix} 0 & -1 & 0 \\ -1 & -3 & -1 \\ 0 & -3 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{cases} X_2 = 0 \\ X_1 + X_3 = 0 \end{cases}$$

So
$$X = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
 is an eigenvector.

Eigenvector for
$$\lambda_2 = 3$$
:
 $Ay = 3y \implies \begin{bmatrix} 4 & -1 & 0 \\ -1 & 1 & -1 \\ 0 & -3 & 4 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

We use Gauss elimination.

$$\begin{bmatrix} 4 & -1 & 0 & 0 \\ -1 & 1 & -1 & 0 \\ -1 & 1 & -1 & 0 \\ 0 & -3 & 4 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 & -1 & 0 \\ -1 & 1 & -1 & 0 \\ 4 & -1 & 0 & 0 \\ 0 & -3 & 4 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 & -1 & 0 \\ 0 & 3 & -4 & 0 \\ 0 & -3 & 4 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 3 & -4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

One eigenvector is $y = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}.$

Elgenvector for
$$\lambda_3 = -2$$
:

$$A = -2z \implies \begin{bmatrix} -1 & -1 & 0 \\ -1 & -4 & -1 \\ 0 & -3 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\implies \begin{bmatrix} 1 & 1 & 0 \\ -3 & -1 \\ -2 \\ -3 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \\ -2 \\ -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\implies \begin{bmatrix} 1 & 1 & 0 \\ -3 & -1 \\ -2 \\ -2 \\ -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\implies \begin{bmatrix} 1 & 1 & 0 \\ -3 & -1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\implies \begin{bmatrix} 1 & 1 & 0 \\ -3 & -1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\implies \begin{bmatrix} 1 & 1 & 0 \\ -3 & -1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -2 \\ -2 \\ -1 \\ -1 \end{bmatrix}$$

$$\implies \begin{bmatrix} 1 & 1 & 0 \\ -3 & -1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -1 \end{bmatrix}$$

$$\implies \begin{bmatrix} 1 & 1 & 0 \\ -3 & -1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -1 \end{bmatrix}$$

$$\implies \begin{bmatrix} -1 \\ -1 \\ -1 \\ -2 \\ -1 \\ -1 \end{bmatrix}$$

$$\implies \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \\ -2 \\ -1 \end{bmatrix}$$

$$\implies \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \\ -2 \\ -1 \end{bmatrix}$$

$$\implies \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \\ -2 \\ -1 \end{bmatrix}$$

$$\implies \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$

$$\implies \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$

$$\implies \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$

$$\implies \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$

$$\implies \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$

$$\implies \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$

$$\implies \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$

$$\implies \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$

• LESLIE MATRICES REVISITED:
AN APPLICATION OF EIGENVECTORS
AND EIGENVALUES
Recult that if
$$L = \begin{bmatrix} F_0 & F_1 & \cdots & F_{m-1} \\ P_0 & 0 & \cdots & 0 \\ 0 & P_1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

is the Leslie matrix of a population, then:
• the females are split into
m age groups
• Fi is the offspring-rate of the
i-th age group (i=0,...,m-1)
• Pi is the survival rate of the
i-th age group (i=0,...,m-1).
Suppose the Leslie matrix is
 $L = \begin{bmatrix} 1.5 & 2 \\ 0.08 & 0 \end{bmatrix}$
and we stort with the population
 $Vector$
 $N(0) = \begin{bmatrix} 100 \\ 100 \end{bmatrix}$.

We are use the relation

$$N(t+1) = L N(t)$$
to find successive population vectors.
These are:
[100], [350], [541], [868], [1388], [2821],...
[100], [350], [541], [868], [1388], [2821],...
[100], [350], [28], [43], [69], [111], ...
[et us look at the successive ratks
of 0-year obs, i.e.

$$g_0(t) = \frac{N_0(t)}{N_0(t+1)}, \quad t = 1,2,...$$
These are:
3.5, 1.55, 1.60, 1.5991, 1.6001, 1.5997, 1.600].
It seemi like these ratios converge
to a specific number (=1.6) when $t \gg \infty$.
What about the corresponding quotients
for the 1-year-olds? We have the numbers
0.08, 3.5, 1.536, 1.605, 1.609, 1.604,...
and it seems that these quotients
converge to the same number.

We now look at the proportion of
the O-year olds in the total population,
namely

$$P_0(t) = \frac{N_0(t)}{N_0(t) + N_0(t)}, t = 0, 1, 2, ...$$

Its values be:
 $0.5, 0.9777, 0.9528, 0.9526, ...$
and again it looks like these percentages
converge to $\cong 95, 2\%$.
This means that asymptotically,
the population will tend to consist of
 $\cong 95.2\%$ D-y.o. and
 $\cong 4.8\%$ 1-y.o
In other words, these observations
suggest that the population vectors
tend to become multiples of one vector V
for which
 $LV = \lambda V$ (where $\beta = 1.6$).
We know that V is on eigenvector for L.
This vector is called a stable age distribution

vector.

How do we find the stable age
distribution in general?
• For
$$L = \begin{bmatrix} 1.5 & 8 \\ 0.08 & 0 \end{bmatrix}$$
 as in our example
we find eigenvalues and eigenvectors.
 $det(\lambda I - L) = \begin{vmatrix} \lambda - 1.5 & -2 \\ -0.08 & \lambda \end{vmatrix}$
 $= \lambda(\lambda - 1.5) - 0.16$
 $= \lambda^2 - 1.5 \lambda - 0.16$
We solve $det(\lambda I - L) = 0 \iff$
 $\lambda^2 - 1.5 \lambda - 0.16 = 0$.
 $D = (-1.5)^2 + 4.0.16 = \frac{989}{100}$
 $\lambda_{1,2} = \frac{1}{2}(\frac{3}{2} \pm \frac{17}{10}) < \lambda_{1} = \frac{8}{5} = 1.6$
 $\lambda_{2} = -\frac{1}{10} = -0.1$
We now find the corresponding
eigenvectors.

• For
$$\lambda_1 = 1.6$$
:

$$L = \frac{8}{5} \times \implies \begin{bmatrix} 0.1 & -2 \\ -0.08 & 1.6 \end{bmatrix} \begin{bmatrix} x_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 0 \\ b \end{bmatrix}$$

$$\implies 0.1 x_1 - 2x_2 = 0$$

$$\implies x_4 - 20x_2 = 0$$

$$X = \begin{bmatrix} 20 \\ 1 \end{bmatrix} \text{ is an eigenvector.}$$
• for $\lambda_2 = -0.1$:

$$L = \begin{bmatrix} -1.6 & -8 \\ -0.08 & -0.1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\implies 1.6y_1 + 2y_2 = 0$$

$$\implies 1.6y_1 + 5y_2 = 0.$$

$$Y = \begin{bmatrix} 5 \\ -4 \end{bmatrix} \text{ is an eigenvector.}$$
Let's suppose we shart studying the population when $N(0) = \begin{bmatrix} 105 \\ 1 \end{bmatrix}$.
We express this vector as a "linear combination" of the eigenvectors \times and Y of L .

$$N(0) = \begin{bmatrix} 105\\ 1 \end{bmatrix} = 5 \cdot \begin{bmatrix} 20\\ 1 \end{bmatrix} + \begin{bmatrix} 5\\ -4 \end{bmatrix} = 5 \times + y$$

The population vector N(t) at time t is

$$N(t) = L^{t} \cdot N(0)$$

$$= L^{t} (5 \times + y)$$

$$= 5 L^{t} \times + L^{t} y$$

$$= 5 (1.6)^{t} \times + (-1)^{t} y$$

Because the eigenvalue
$$\lambda_1 = 8/5$$

is bigger, the first term
will "dominate" in the sum
and will describe the asymptotic
behaviour of N(t).

Suppose L is a 2x2 Leslie matrix with eigenvalues λ_1 and λ_2 . . The larger eigenvalue is the growth parameter of the population, • The eigenvector that corresponds to the larger eigenvalue is a stable age distribution.

(The same applies for Leslie matrices of higher dimensions, for example 3×3 matrices).

4. ANALYTIC GEOMETRY

Generally, for any $N \ge 1$ we define $\mathbb{R}^n = \left\{ (x_1, x_2, \dots, x_n) : x_1, x_2, \dots, x_n \in \mathbb{R} \right\}$

Elements of IR^h are represented as N-tuples (X1, X2,...,Xn) or -preferciblyas n-dimensional column vectors $\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T$

The numbers XI, XZ, ..., Xn EIR are called the <u>components</u> or coordinates of X.

