$$
\left[\begin{array}{l}
4 \\
1
\end{array}\right]=2\left[\begin{array}{l}
1 \\
-1
\end{array}\right]+\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

Exercise: Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$
(i) Find eigenvalues \& eipenectrs of A (ii) Find $A^{10} V$, where $V=\left[\begin{array}{l}4 \\ 1\end{array}\right]$.
(i) We have found that A has eigenvalues $\lambda_{1}=-1, \lambda_{2}=4$ with eigenvectors

$$
x_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad x_{2}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \text { respectively. }
$$

(ii) We analyse v as

$$
V=\alpha_{1} x_{1}+\alpha_{2} x_{2}
$$

(This is Gulled a linear combination of the vectors x_{1} and x_{2}).

$$
\begin{aligned}
\alpha_{1} x_{1} & +\alpha_{2} x_{2}=v \Rightarrow \alpha_{1}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+\alpha_{2}\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
4 \\
1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]=\left[\begin{array}{c}
4 \\
1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]=\frac{1}{3+2}\left[\begin{array}{cc}
3 & -2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
1
\end{array}\right]=\frac{1}{5}\left[\begin{array}{c}
10 \\
5
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\end{aligned}
$$

So $\alpha_{1}=2$ and $\alpha_{2}=1$.
Therefore

$$
v=2 x_{1}+x_{2}
$$

We now find $A^{10} V$

$$
\begin{aligned}
A^{10} V & =A^{10}\left(2 x_{1}+x_{2}\right) \\
& =2 \cdot A^{10} x_{1}+A^{10} x_{2} \\
& =2 \cdot \lambda_{1}^{10} x_{1}+\lambda_{2}^{10} x_{2} \\
& =2 \cdot(-1)^{20} x_{1}+4^{10} x_{2} \\
& =4^{10}\left[\begin{array}{l}
2 \\
3
\end{array}\right]+2\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{l}
2 \cdot 4^{10}+1 \\
3 \cdot 4^{10}-2
\end{array}\right] .
\end{aligned}
$$

Exercise: Find the eigenvalues and eigenvectors of

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 3 & -1
\end{array}\right] \\
\operatorname{det}(\lambda I-A) & =\left|\begin{array}{ccc}
\lambda+1 & -1 & 0 \\
-1 & \lambda-2 & -1 \\
0 & -3 & \lambda+1
\end{array}\right| \\
& =(\lambda+1)\left|\begin{array}{cc}
\lambda-2 & -1 \\
-3 & \lambda+1
\end{array}\right|+\left|\begin{array}{cc}
-1 & -1 \\
0 & \lambda+1
\end{array}\right| \\
& =(\lambda+1)[(\lambda-2)(\lambda+1)-3]-(\lambda+1) \\
& =(\lambda+1)\left(\lambda^{2}-\lambda-2-3-1\right) \\
& =(\lambda+1)\left(\lambda^{2}-\lambda-6\right) \\
& =(\lambda+1)(\lambda-3)(\lambda+2) .
\end{aligned}
$$

So $\operatorname{det}(\lambda I-A)=0 \Rightarrow \lambda=-1$ or $\lambda=3$ or $\lambda=-2$.
Eigenvalues of $A: \lambda_{1}=-1, \lambda_{2}=3, \lambda_{3}=-2$.

Eigenvector for $\lambda_{1}=-1$:

$$
\begin{aligned}
A x=-x & \Rightarrow\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & -3 & -1 \\
0 & -3 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \Rightarrow\left\{\begin{array}{l}
x_{2}=0 \\
x_{1}+x_{3}=0
\end{array}\right.
\end{aligned}
$$

So $x=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ is an eigenvector.
Eigenvector for $\lambda_{2}=3$:

$$
A y=3 y \Rightarrow\left[\begin{array}{rrr}
4 & -1 & 0 \\
-1 & 1 & -1 \\
0 & -3 & 4
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

We use Gauss elimination.

$$
\begin{aligned}
& {\left[\begin{array}{ccc:c}
4 & -1 & 0 & 0 \\
-1 & 1 & -1 & 0 \\
0 & -3 & 4 & 0
\end{array}\right] \sim\left[\begin{array}{ccc:c}
-1 & 1 & -1 & 0 \\
4 & -1 & 0 & 0 \\
0 & -3 & 4 & 0
\end{array}\right] \sim\left[\begin{array}{ccc:c}
-1 & 1 & -1 & 0 \\
0 & 3 & -4 & 0 \\
0 & -3 & 4 & 0
\end{array}\right]} \\
& \sim\left[\begin{array}{rrr:r}
1 & -1 & 1 & 0 \\
0 & 3 & -4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

One eigenvector is $y=\left[\begin{array}{l}1 \\ 4 \\ 3\end{array}\right]$.

Eigenvector for $\lambda_{3}=-2$:

$$
\begin{aligned}
A z=-2 z & \Rightarrow\left[\begin{array}{ccc}
-1 & -1 & 0 \\
-1 & -4 & -1 \\
0 & -3 & -1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 3 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

For $z_{2}=1$ and $z_{3}=-3$, we get $z_{1}=-1$.
So $z=\left[\begin{array}{c}-1 \\ 1 \\ 3\end{array}\right]$ is an eigenvector.

- Leslie matrices revisited:

AN APPLICATION OF EIGENVECTORS AND EIGENVALUES
Recall that if $L=\left[\begin{array}{cccc}F_{0} & F_{1} & \cdots & F_{m-1} \\ P_{0} & 0 & \cdots & 0 \\ 0 & P_{1} & \cdots & 0 \\ \vdots & \vdots & \cdots & 0\end{array}\right]$
is the Leslie matrix of a population, then:

- the females are split into m age groups
- F_{i} is the offspring-rate of the $i-t h$ age group $(i=0, \ldots, m-1)$
- P_{i} is the survival rate of the i-th age group $(i=0, \ldots, m-1)$.
Suppose the Leslie matrix is

$$
L=\left[\begin{array}{ll}
1.5 & 2 \\
0.08 & 0
\end{array}\right]
$$

and we start with the population vector

$$
N(0)=\left[\begin{array}{l}
100 \\
100
\end{array}\right]
$$

We can use the relation

$$
N(t+1)=L N(t)
$$

to find successive population vectors. These are:

$$
\left[\begin{array}{l}
100 \\
200
\end{array}\right],\left[\begin{array}{c}
350 \\
8
\end{array}\right],\left[\begin{array}{c}
541 \\
28
\end{array}\right],\left[\begin{array}{c}
868 \\
43
\end{array}\right],\left[\begin{array}{c}
1388 \\
69
\end{array}\right],\left[\begin{array}{c}
2221 \\
111
\end{array}\right], \ldots
$$

Let us look at the successive ratios of 0 -year olds, i.e.

$$
q_{0}(t)=\frac{N_{0}(t)}{N_{0}(t-1)}, \quad t=1,2, \ldots
$$

These are:

$$
3.5,1.55,1.60,1.5991,1.6001,1.5997,1.6001 .
$$

It seems like these ratios converge to a specific number $(=1.6)$ when $t \rightarrow \infty$.

What about the corresponding quotients for the 1-yeur-olds? We nave the numbers

$$
0.08, \quad 3.5,1.536,1.605,1.609,1.604, \ldots
$$

and it seems that these quotients converge to the same number.

We now look at the proportion of the 0 -year olds in the total population, namely

$$
P_{0}(t)=\frac{N_{0}(t)}{N_{0}(t)+N_{1}(t)}, \quad t=0,1,2, \ldots
$$

Its values we:

$$
0.5,0.9777,0.9528,0.9526, \ldots
$$

and again it looks like these percentages converge to $\cong 95.2 \%$.

This means that asymptotically, the population will tend to consist of

$$
\begin{array}{ll}
\cong 95.2 \% & 0-y .0 . \\
\cong 4.8 \% & 1-y .0
\end{array} \text { and }
$$

In other words, these observations suggest that the population vectors tend to become multiples of one vector V for which

$$
L V=\lambda V \text { (where } \lambda=1.6)
$$

We know that v is an eigenvector for L. This vector is called a stable age distribution vector.

How do we find the stable age distribution in general?

- For $L=\left[\begin{array}{ll}1.5 & 8 \\ 0.08 & 0\end{array}\right]$ as in our example we find eigenvalues and eigenvectors.

$$
\begin{aligned}
\operatorname{det}(\lambda I-L) & =\left|\begin{array}{cc}
\lambda-1.5 & -2 \\
-0.08 & \lambda
\end{array}\right| \\
& =\lambda(\lambda-1.5)-0.16 \\
& =\lambda^{2}-1.5 \lambda-0.16
\end{aligned}
$$

We solve $\operatorname{det}(\lambda I-L)=0 \Leftrightarrow$

$$
\begin{aligned}
& D=(-1.5)^{2}+4 \cdot 0.16=\frac{289}{100} \\
& \lambda_{1,2}=\frac{1}{2}\left(\frac{3}{2} \pm \frac{17}{10}\right)<\begin{array}{l}
\lambda_{1}=\frac{8}{5}=1.6 \\
\lambda_{2}=-\frac{1}{10}=-0.1
\end{array}
\end{aligned}
$$

We now find the corresponding eigenvectors.

- For $\lambda_{1}=1.6$:

$$
\begin{aligned}
L x=\frac{8}{5} x & \Rightarrow\left[\begin{array}{cc}
0.1 & -2 \\
-0.08 & 1.6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \Rightarrow 0.1 x_{1}-2 x_{2}=0 \\
& \Rightarrow x_{1}-20 x_{2}=0
\end{aligned}
$$

$x=\left[\begin{array}{c}20 \\ 1\end{array}\right]$ is an eigenvector.

- For $\lambda_{2}=-0.1$:

$$
\begin{aligned}
L y=-\frac{1}{20} y & \Rightarrow\left[\begin{array}{cc}
-1.6 & -2 \\
-0.08 & -0.1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \Rightarrow 1.6 y_{1}+2 y_{2}=0 \\
& \Rightarrow 4 y_{1}+5 y_{2}=0
\end{aligned}
$$

$y=\left[\begin{array}{c}5 \\ -4\end{array}\right]$ is an eigenvector.
Let's suppose we start studying the population when $N(0)=\left[\begin{array}{c}105 \\ 1\end{array}\right]$.
We express this vector as a "linear combination r of the eigenvectors x and y of L.

$$
N(0)=\left[\begin{array}{c}
105 \\
1
\end{array}\right]=5 \cdot\left[\begin{array}{c}
20 \\
1
\end{array}\right]+\left[\begin{array}{c}
5 \\
-4
\end{array}\right]=5 x+y
$$

The population vector $N(t)$ at time t is

$$
\begin{aligned}
N(t) & =L^{t} \cdot N(0) \\
& =L^{t}(5 x+y) \\
& =5 L^{t} x+L^{t} y \\
& =5(1 \cdot x)^{t} x+(-1)^{t} y
\end{aligned}
$$

Because the eigenvalue $\lambda_{1}=8 / 5$ is bigger, the first term will "dominate" in the sum and will describe the asymptotic behaviour of $N(t)$.

Suppose L is a 2×2 Leslie matrix with eigenvalues λ_{1} and λ_{2}.

- The larger eigenvalue is the growth parameter of the population.
- The eigenvector that corresponds to the larger eigenvalue is a stable age distribution.
(The same applies for Leslie matrices of higher dimensions, for example 3×3 matrices).

4. ANALYTIC GEOMETRY

We have already seen that the 2-dimensional plane can be identified with the set of ordered pairs $\left(x_{1}, x_{2}\right), x_{1}, x_{2} \in \mathbb{R}$.

Generally, for any $n \geq 1$ we define

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}\right\}
$$

Elements of \mathbb{R}^{h} are represented as n-tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ or -preferablyas h-dimensional column vectors

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\dot{x}_{n}
\end{array}\right]=\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right]^{\top}
$$

The numbers $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$ are called the components or coordinates of x.

We hove defined vector addition:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\dot{x_{n}}
\end{array}\right]+\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\dot{y}_{n}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{n}+y_{n}
\end{array}\right]
$$

and multiplication of a vector by a scalar:

$$
\lambda \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
\lambda x_{1} \\
\lambda x_{2} \\
\dot{x}_{n} \\
\lambda x_{n}
\end{array}\right] \text {. }
$$

For 2-dimensional \& 3-dimensínal vectors he may represent vector operations geometrically.

This is no longer possible in dimensions greater than 3. However the properties of the operations remain the same.

