Most of the assignments so far had 4 questions. In this question sheet you can find 9 questions. You need 3 questions answered correctly in order to have the assignment approved.

You can also deal with the remaining ones for practice/revision. (Oppgave 9 is a little too hard, don't spend too much time on it.)

1 Evaluate the following integrals.
a) $\int_{0}^{\pi / 2} e^{-x} \sin (2 x) \mathrm{d} x$
b) $\int_{0}^{\ln 2} \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \mathrm{~d} x$.

2 Let

$$
f(x)=\int_{\sqrt{x}}^{x^{2}}\left(u^{2}-\frac{1}{\sqrt{u}}\right) \mathrm{d} u, \quad x>0 .
$$

Find $f^{\prime}(x)$.

3 Find the limit

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}
$$

4 Prove that the equation

$$
\left(x^{2}-4\right) e^{x}=\left(x^{2}+1\right) \ln \left(\frac{1}{1+x}\right)
$$

has at least one solution in the interval $(0,2)$.

5 Let

$$
g: \mathbb{R} \rightarrow \mathbb{R}, \quad g(x)=(x+1) e^{-x} .
$$

Find the domain of g, the intervals where g is monotonic, the intervals where it is convex/concave and its asymptotes. Sketch the graph of g.

6 Find the area of the domain in the two-dimensional plane that is surrounded by the graph of the function $f(x)=1-x^{2}$, the tangent line of the graph at the point $(0, f(0))$ and the tangent line of the graph at the point $(1, f(1))$.

7 Find the limit

$$
\lim _{x \rightarrow 1} \frac{1}{x-1} \int_{x}^{x^{2}} \frac{\sin u}{u} \mathrm{~d} u
$$

8 Find $a \in \mathbb{R}$ such that

$$
\int_{a}^{\infty} e^{-2 x} d x=\frac{1}{4}
$$

$9\left(^{*}\right)$ Which of the following numbers is bigger: e^{π} or π^{e} ?

