Exercise: Find the intemals of monotonicity a) well as the local o global extrema of

$$
f(x)=\frac{3}{2} x^{4}-2 x^{3}-6 x^{2}+2, \quad x \in \mathbb{R}
$$

- We find the derivative of f.

$$
\begin{aligned}
f^{\prime}(x) & =6 x^{3}-6 x^{2}-12 x \\
& =6 x\left(x^{2}-x-2\right) \longleftarrow \text { abc-formul } \\
& =6 x(x-2)(x+1)
\end{aligned}
$$

$$
f \searrow(-\infty,-1], \quad f \not \subset[-1,0], f \searrow[0,2], \quad f_{\gamma}[2,+\infty) .
$$

f has a loc. minimum at $x=-1$, the number $f(-1)=-\frac{1}{2}$
f has a bloc. maximum at $x=0$, the number $f(0)=8$
f hols a floc. minimum at $x=2$, the number $f(2)=-14$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty}\left(\frac{3}{2} x^{4}-2 x^{3}-6 x^{2}+2\right)=+\infty \\
& \lim _{x \rightarrow+\infty} f(x)=+\infty
\end{aligned}
$$

f does not have a global maximum.
f has a global minimum at $x=2$, which is equal to $f(2)=-14$.

(NOT EXAMINABLE)
f is continuous at $[1,3]$
f is differentiable at $(1,3)$
(BUT NOT AT THE POINTS $x=1, x=3$)
$f^{\prime}(x)<0$ for all $x \in(1,3)$

$$
f \downharpoonleft[1,3]
$$

$$
\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) g(x)=f(x) g^{\prime}(x)}{g^{2}(x)}
$$

Exercise: Let $f:(0,+\infty) \rightarrow \mathbb{R}, f(x)=\frac{e^{x}}{x}$.
(i) Find the local and global extrema of f.
(ii) What is the range of f ?
(i)

$$
\begin{aligned}
& f(x)=\frac{e^{x}}{x}, x>0 \\
& f^{\prime}(x)=\frac{\left(\left.e^{x}\right|^{\prime} x-e^{x}(x)^{\prime}\right.}{x^{2}}=\frac{e^{x}(x-1)}{x^{2}}, x>0 . \\
& f^{\prime}(x)>0 \Leftrightarrow \frac{e^{x}(x-1)}{x^{2}}>0 \Leftrightarrow x-1>0 \Leftrightarrow x>1 \\
& f^{\prime}(x)<0 \Leftrightarrow \frac{e^{x}(x-1)}{x^{2}}<0 \Leftrightarrow x<1 \text {. } \\
& \begin{array}{cccc|}
x & 0 & 1 & +\infty \\
\hline f^{\prime}(x) & -\infty & + \\
f(x) & > & e & \nearrow
\end{array} \\
& f y(0,1] \\
& f \text { in }[1,+\infty)
\end{aligned}
$$

f has a local min. at $x=1$,
which is equal to $f(1)=e$.
This is also a global minimum.
f has no global maximum.
(ii)

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{e^{x}}{x} \\
& \quad=\lim _{x \rightarrow+\infty} \frac{e^{x}}{1}=\lim _{x \rightarrow+\infty} e^{x}=+\infty
\end{aligned}
$$

$[e, 6)$

The range of f is equal to

$$
f((0,+\infty))=[e,+\infty)
$$

* We can actually see that also

$$
\lim _{x \rightarrow 0^{+}} \frac{e^{x}}{x}=+\infty
$$

$$
\begin{aligned}
& f((0,1])=[e,+\infty) \\
& f([1,+\infty))=[e,+\infty)
\end{aligned}
$$

A very important fact regarding monotonicity: a strictly monotonic function (i.e. either strictly increasing or strictly decreasing) is almays one-tu-one (invertible).

As such, it (an assume a real value $y \in \mathbb{R}$ at most once (i.e. once or it might not assume this value at all).

In particular, f can have at most one rout in any interval where it is strictly monotonic.

Suppose he are given an equation of the form $f(x)=0$. To show that this has precisely one root in $[a, b]$:

- We show it has at least one rout in $[a, b]$.
- We show that f is monotonic on $[a, b]$.

$$
x^{2}-x+1=0 \quad \sin x+3 \geqslant-1+3=2>0
$$

Exercise: How many roots does the equation

$$
\sin x+2 x=0
$$

hove on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$?
ANSWER: Set $f(x)=\sin x+2 x, x \in[-\pi / 2, \pi / 2]$.

- f is continuous on $[-\pi / 2, \pi / 2]$

$$
\begin{aligned}
& \text { - } \begin{array}{l}
f(-\pi / 2)=\sin (-\pi / 2)-\Omega=-1-\Omega<0 \\
f(\pi / 2)=\sin (\Omega / 2)+\Omega=1+\Omega>0 \\
\text { thus } f(-\pi / 2) \cdot f(\Omega / 2)<0
\end{array} \text {. }
\end{aligned}
$$

Therefore by the Intermediate Value theorem, there exists some $x_{0} \in(-\Omega / 2, \pi / 2)$ such that $f\left(X_{0}\right)=0$. le. $f(x)=0$ has at least one rout in $[-\pi / 2, \pi / 2]$.

$$
f^{\prime}(x)=\frac{\cos x}{\geqslant-1}+2 \geqslant-1+2=1>0
$$

for all ${ }^{\geqslant-1} x \in(-\pi / 2, \pi / 2)$, hence f $][-\pi / 2, \pi / 2]$
Therefore the root of f in $[-\pi / 2, r / 2]$ must be unique.
The initial equation $h a s$ precisely one root in $[-\pi / 2, \pi / 2]$.

Exercise: How many solutions does the equation $x^{3}-3 x+1=0$
have on the interval $[-2,2]$?
(HiST 2019, OPPGAVE 6)

- Set $f(x)=x^{3}-3 x+1, x \in[-2,2]$. (We need the number of routs of f)

$$
f^{\prime}(x)=3 x^{2}-3=3\left(x^{2}-1\right)=3(x-1)(x+1)
$$

$$
\begin{aligned}
& f-r[-2,-1] \\
& f^{\gamma}[-1,1] \\
& f_{x}[1,2]
\end{aligned}
$$

$$
\begin{aligned}
& f(-2)=(-2)^{3}-3(-2)+1=-8+6+1=-1 \\
& f(-1)=(-1)^{3}-3(-1)+1=3 \\
& f(1)=1-3+1=-1 \\
& f(2)=2^{3}-3 \cdot 2+1=3
\end{aligned}
$$

On each of the intervals $[-2,-1],[-1,1]$ and $[1,2]$, the function f has a rout. This root is unique, because f is strictly monotonic there.

Therefore f has precisely 3 roots in $[-2,2]$.

