On 1-Gorenstein algebras of finite Cohen-Macaulay type

Javad Asadollahi (University of Isfahan) Joint with Rasool Hafezi (NUIST) and Zohreh Karimi (UI), [Michigan Math. J. (2023)]

Flash Talks in Representation Theory IV January 5, 2024

Motivation

Let Λ be an Artin algebra of finite representation type.

Question. When Auslander algebra of Λ is also of finite representation type?

Auslander (1971) in his Queen Mary College Notes, showed that

'this is the case if and only if $T_2(\Lambda)$ is of finite representation type'

where $T_n(\Lambda)$ denote the algebra of *n* by *n* lower triangular matrices.

Auslaner and Reiten (1974): $T_2(\Lambda)$ is of finite representation type, if - Λ is a radical square zero Nakayama algebra or

- Λ is an algebra such that each indecomposable $\Lambda\text{-module}$ is projective or injective.

They also showed that although $T_2(T_2(\Lambda))$ may be of finite representation type, but $T_2(T_2(T_2(\Lambda)))$ is always of infinite representation type.

Incomplete list of references:

Z. Leszczynski and D. Simson (1979), K. Igusa, M. Platzeck, G. Todorov and D. Zacharia (1987), V. Dlab, C.M. Ringel (1990), G. Todorov and D. Zacharia (1991), B-L. Xiong, P. Zhang and Y-H. Zhang (2014), M. Lu (2020),

Our aim. When $T_2(\Lambda)$ is of finite representation type?

M. Auslander and M. Bridger (1969). A Λ -module M in $mod(\Lambda)$, is called Gorenstein projective if it is isomorphic to a syzygy of a totally acyclic complex P^{\bullet} of finitely generated projective modules.

Recall that a complex

$$P^{\bullet}:\cdots \rightarrow P^{-1} \xrightarrow{d^{-1}} P^{0} \xrightarrow{d^{0}} P^{1} \rightarrow \cdots$$

of finitely generated projective Λ -modules is called totally acyclic if it is acyclic and the induced Hom complex $\operatorname{Hom}_{\Lambda}(P^{\bullet}, \Lambda)$ is also acyclic.

 $\mathscr{G}(\Lambda)$ = the full subcategory of $mod(\Lambda)$ consisting of all Gorenstein projective modules.

A. Beligiannis (2011): An Artin algebra Λ is called of **finite CM-type** if there are only finitely many isomorphism classes of indecomposable Gorenstein projective modules.

Let $\mathscr{G}(\Lambda) = \operatorname{add}(G)$. Then $\operatorname{End}_{\Lambda}(G)^{\operatorname{op}}$, denoted by $\operatorname{Aus}(\mathscr{G}(\Lambda))$, is called the Cohen-Macaulay Auslander algebra of Λ .

If Λ is self-injective, then $\mathscr{G}(\Lambda) = \text{mod}(\Lambda)$. Hence a self-injective algebra Λ is of finite CM-type if and only if it is of finite representation type.

Let $\Lambda = k[x]/(x^n)$, where k is an algebraically closed field. Note that Λ is a representation-finite self-injective algebra.

Y. Drozd, and V. Mazorchuk (2006): Auslander algebra of Λ is of finite representation type if and only if $n \leq 3$.

So $T_2(\Lambda)$ is of finite representation type if and only if $n \leq 3$.

Z.-W. Li and P. Zhang (2010): If n = 4 or n = 5, then $T_2(\Lambda)$ is an algebra of finite CM-type.

Therefore $T_2(k[x]/(x^4))$ is an algebra of infinite representation type but of finite CM-type.

Consider the collection $\mathscr{L}(\mathscr{G}(\Lambda))$ of all left exact sequences

$$G: G_2 \stackrel{f_2}{\hookrightarrow} G_1 \stackrel{f_1}{\to} G_0$$

in $mod(\Lambda)$ such that $G_0, G_1, G_2 \in \mathscr{G}(\Lambda)$. By applying the Yoneda functor to G, we get the exact sequence

$$0 \longrightarrow (-, G_2) \stackrel{(-, f_2)}{\longrightarrow} (-, G_1) \stackrel{(-, f_1)}{\longrightarrow} (-, G_0) \longrightarrow F_G \longrightarrow 0$$

in $mod(\mathscr{G}(\Lambda))$. Define

$$\mathscr{F}:\mathscr{L}(\mathscr{G}(\Lambda)) o \operatorname{mod}(\mathscr{G}(\Lambda))$$

by $\mathscr{F}(G) := F_G$.

There exists a functor

$$\vartheta : \operatorname{mod}(\mathscr{G}(\Lambda)) \longrightarrow \operatorname{mod}(\Lambda)$$

defined as follows. For $F \in \operatorname{mod}(\mathscr{G}(\Lambda))$ consider a projective presentation

$$(-, G_1) \stackrel{(-, f)}{\longrightarrow} (-, G_0) \longrightarrow F \longrightarrow 0$$

in $mod(\mathscr{G}(\Lambda))$, where G_1 and G_0 lie in $\mathscr{G}(\Lambda)$. Define

$$\vartheta(F) := \operatorname{Coker}(G_1 \longrightarrow G_0).$$

It follows from a result of JA, R. Hafezi and M.H. Keshavarz (2021) that, over 1-Gorenstein algebras, ϑ is an exact functor that admits left and fully faithful right adjoints.

Results

Recall

$$\vartheta: \operatorname{mod}(\mathscr{G}(\Lambda)) \longrightarrow \operatorname{mod}(\Lambda)$$

Theorem

Let Λ be a 1-Gorenstein algebra of finite CM-type. Then the subcategory $\vartheta^{-1}(\mathscr{G}(\Lambda))$ of $\operatorname{mod}(\mathscr{G}(\Lambda))$ is of finite representation type if and only if $T_3(\Lambda)$ is of finite CM-type.

Corollary

Let Λ be a self-injective algebra of finite representation type. Then $T_2(\Lambda)$ is of finite representation type if and only if $T_3(\Lambda)$ is of finite CM-type.

Corollary

Let Λ be a 1-Gorenstein algebra of finite CM-type. If the Cohen-Macaulay Auslander algebra $\operatorname{Aus}(\mathscr{G}(\Lambda))$ of Λ is of finite representation type, then $T_3(\Lambda)$ is of finite CM-type.

Corollary

Let Λ and Λ' be finite dimensional algebras such that one of them is self-injective of finite representation type. If Λ and Λ' are derived equivalent, then the Auslander algebra of Λ is of finite representation type if and only if the Auslander algebra of Λ' is so. - J. Asadollahi, R. Hafezi and M.H. Keshavarz, *Auslander's Formula for contravariantly finite subcategories*, J. Math. Soc. Japan. (2021).

- M. Auslander, *Representation dimension of Artin algebras,* Queen Mary College Notes, London, 1971.

- M. Auslander and I. Reiten, *On the representation type of triangular matrix rings*, J. London Math. Soc. (1975/76).

- A. Beligiannis, *On algebras of finite Cohen-Macaulay type*, Adv. Math. (2011).

- Y. Drozd and V. Mazorchuk, *Representation type of* $^{\infty}_{\lambda}\mathcal{H}^{1}_{\mu}$, Q. J. Math. (2006).

- Z.-W. Li and P. Zhang, *A construction of Gorenstein-projective modules* J. Algebra (2010).

Thank you for your attention!