

BY JORGE VITORIA

FROM UNIVERSITÀ DEGLI STUDI DI PADOVA

AT FLASH TALKS IN REPRESENTATION THEORY 2024

(joint work with Lidia Angeleri Hügel and David Pauksztello)

8 1. THE PROBLEM

 Λ finite dimensional k-algebra, per $(\Lambda) = k^b (proj \Lambda)$

Definition: $X \in \text{per } \Lambda$ is: presilting if $\text{Hom}_{\text{per}(\Lambda)}(X, X[>0]) = 0$ Sitting if $\text{Hom}_{\text{per}(\Lambda)}(X, X[>0]) = 0$ Thick $(X) = \text{per } \Lambda$ A presilting $X \in \text{per } \Lambda$ admits a Complement in $\text{per } \Lambda$ if $\exists V \in \text{per } \Lambda \times \Phi \vee \text{ Silting}$.

Question: Does every presilting in per 1 admit a complement in per (1)?

Answer: [2023: Liu-Zhou 2302.12502, Jin-Schroll-Wang 2303.17474, KALCK 2304.08417] NO

8 1. THE PROBLEM

 Λ finite dimensional k -algebra, per $(\Lambda) = k^b (proj \Lambda)$

Definition: $X \in \text{per } \Lambda$ is: presilting if $\text{Hom}_{\text{per}(\Lambda)}(X, X[>0]) = 0$ Silting if $\text{Hom}_{\text{per}(\Lambda)}(X, X[>0]) = 0$ $\text{Hick}(X) = \text{per } \Lambda$

A presilting $X \in \text{per } \Lambda$ admits a complement in per Λ if $\exists V \in \text{per } \Lambda \times \oplus V$ silting.

Question: Does every presilting in per 1 admit a Complement in per (1)?

When a or elsewhere...?

82. THE TOOLS

darge silting OBJECTS in $D(\Lambda)$

- Hom $(x, x^{(I)}) = 0$, $\forall I$
- thick $(Add X) = k^b(Proj \Lambda)$

Co-t-Structure (2, V)

- · Hom (U, V) =0
- U[-)] ⊆ U
- · U*T=T

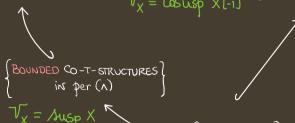
THEOREM [Mendoza-Sáenz Santiago-Souto 13; Tyama-Yang 18; Nicolas-Saorín-Evonareval 19; Angeleri Hügel-Marks-V'20]

For an object $Z \in D(A)$, denote by V_Z the subcategory $(Z[<o])^{\perp} = Z^{\perp > 0}$.

$$\begin{cases}
\text{CO-T-STRUCTURES} \\
\text{in per (A)}
\end{cases}$$

$$\begin{array}{c}
\text{($^{\perp}V_{\times}, V_{\times}$)} \\
\text{V}_{X} = \text{Cosusp } \times \text{[-1]}
\end{cases}$$

$$\begin{array}{c}
\text{PRESILTING} \\
\text{in per (A)}
\end{array}$$



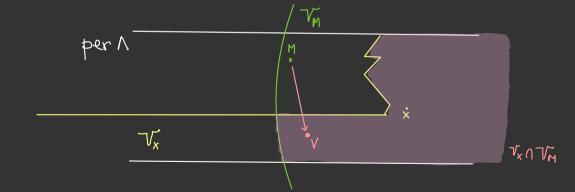
DJACENT T-STRUCTURE

§ 3. THE THEOREMS

$$\mathcal{J}_{z} = (z[\langle \circ])^{\perp} = z^{\perp_{>0}}$$

THEOREM 1 X E per 1 presitting. The following are equivalent.

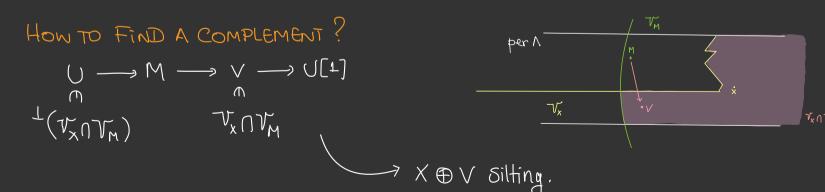
- (1) x admits a complement;
- (2) IME per / Silting: {XEVM (L(V_nVm), V_nVm) co-t-structure in per /.



§ 3. THE THEOREMS

$$V_z = (z[0])^{\perp} = z^{\perp > 0}$$

THEOREM 1 X E per 1 presilting. The following are equivalent.



83. THE THEOREMS

$$V_z = (z[<0])^{\perp} = z^{\perp}$$

THEOREM 2 $X \in \text{per} \Lambda$, Hom(x, x[>6]) = 0. Then: $\exists V \in D(\Lambda) : X \oplus V$ large Silting in $D(\Lambda)$

MHY?

[Saorin-štovíček M]
$$\forall z \in D(\Lambda)$$
, $(^{1}V_{z}, V_{z})$ co - t -structure in $D(\Lambda)$

- Take any (large) Silting M with $x \in V_M$ (e.g. N[n] for some $n \ll 0$) $(\bot(V_{x \oplus M}), V_{x \oplus M} = V_X \cap V_M)$ is a $C_0 t structure$ in D(N).
- $U \longrightarrow M \longrightarrow V \longrightarrow U[1]$ $L(V_X \cap V_M)$ $V_X \cap V_M \longrightarrow X \oplus V$ is large silling. Explicit

