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Lagrangian mechanics, variational calculus. We here denote by Q a dif-
ferentiable d-dimensional manifold of generalized positions, and its tangent bun-
dle TQ represents the velocity phase space. We introduce coordinates on Q,
(q1, . . . , qd) which induces coordinates (q1, . . . , qd, v1, . . . , vd) on TQ. The La-
grangian L is a function on TQ which we may express in coordinates

L : TQ→ R, L(q1, . . . , qd, v1, . . . , vd)

For any differentiable curve q(t) ∈ Q and real numbers t1 < t2 we define the
action

S =

∫ t2

t1

L(q(t), q̇(t)) dt (1)

Our aim is to find the choice of q(t) with fixed endpoints q(t1), q(t2) which
minimizes S. But we take a somewhat weaker approach, we look for a stationary
path q(t). The approach we use is to consider all possible small variations δq(t)
of a candidate curve q(t) and show that they would all increase (or decrease)
the value of S. We assume δ(t1) = δ(t2) = 0 to keep the end points fixed under
the variation.

δS =
d

dε

∣∣∣∣
ε=0

∫ t2

t1

L(qε(t), q̇ε(t)) dt = 0

The curve qε(t) is such that

qε(t)|ε=0 = q(t),
d

dε

∣∣∣∣
ε=0

qε(t) = δq(t) ∈ Tq(t)Q

Assuming we can take the derivative inside the integral, we get

δS =

∫ t2

t1

(
〈∂L
∂q

(q, q̇), δq〉+ 〈∂L
∂q̇

(q, q̇), δq̇〉
)

dt

We now do integration by parts on the second term in the integral,

δS =

∫ t2

t1

〈
∂L

∂q
(q, q̇)− d

dt

(
∂L

∂q̇
(q, q̇)

)
, δq

〉
dt+

[
∂L

∂q̇
(q, q̇)δq

]t2
t1

Hamilton’s principle states that the path chosen by a dynamical system is a
stationary path for the action integral (1). Using the boundary conditions on
δq, and assuming that L is continuously differentiable with respect to both
arguments, we conclude that δS = 0 for all δq requires
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∂L

∂q
(q, q̇)− d

dt

(
∂L

∂q̇
(q, q̇)

)
= 0

These are the Euler-Lagrange equations.

Exercise 1 In the last step before arriving at the Euler-Lagrange equations, we
made use of the following result. If f(t) is a continuous function on [a, b], then∫ b

a
f(t)h(t) dt = 0 for all continuous h(t) requires f(t) ≡ 0 on [a, b] (in fact it is

even enough to assume that the integral vanishes for all h ∈ C∞[a, b]). Prove
this result. �

Example 1 Naturally, the Lagrangian L is the difference between the kinetic
and potential energy of the system. We consider the dynamics of d particles

L(q, q̇) =
1

2

∑
i

mi|q̇i|2 − U(q)

Here, qi ∈ R3 is the position coordinates of the ith particle, and its velocity is
q̇i. So q = (q1, . . . , qd) ∈ R3d. The potential energy U(q) is assumed to only
depend on the positions q. We compute

∂L

∂qi
= −∂U

∂qi
,

∂L

∂q̇i
= miq̇i

so that the Euler–Lagrange equations are

d

dt
(miq̇i) = −∂U

∂qi

This is nothing else than Newton’s second law, mass times acceleration on the
left, and a conservative force field on the right.

�

The Legendre transformation. As discussed previously, the partial deriva-
tives of L both with respect to q and q̇ are dual vectors, i.e. elements of T ∗qQ.
Let

p =
∂L

∂q̇
(q, q̇), (2)

this is called the Legendre transformation, the map (q, q̇) 7→ (q, p) maps TQ to
T ∗Q. The Legendre transform is invertible if its hessian matrix

∂2L

∂q̇2
(q, q̇)

is non-singular. The Hamiltonian function H(q, p) is obtained as

H(q, p) = 〈p, q̇〉 − L(q, q̇) (3)
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where it is understood that (2) is solved for q̇ in terms of (q, p) and inserted into
(3). Now the differential equations for q and p can be found from

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(4)

Exercise 2 For the Lagrangian in Example 1, determine the Legendre trans-

formation and the resulting Hamiltonian function in terms of q and p. �

Symplectic manifolds and Hamiltonian systems A differentiable mani-
fold M together with a differential two-form ω is a symplectic manifold if ω is
non-degenerate and closed.

1. Non-degenerate. This means that for all m ∈M and non-zero u ∈ TmM ,
there is a v ∈ TmM such that ω(u, v) 6= 0. Another way to think of non-
degeneracy is in terms of matrices. Suppose that e1, . . . , en is a basis for
TmM and form the skew-symmetric matrix S with entries Sij = ω(ei, ej).
Then non-degeneracy of ω is equivalent to S being non-singular.

2. Closed. This means that dω = 0. Note that all exact two-forms are closed,
these are forms that can be written as the differentials of a one-form, i.e.
ω = dθ. In star-shaped domains, such as Rn, all closed form are exact.

To every vector field X on a manifold, there corresponds a map iX that takes
k-forms to k − 1-forms defined as

(iXω)(v1, . . . , vk−1) = ω(X, v1, . . . , vk−1)

This map is called an interior derivative.
Now let H be any smooth function on M . Then XH is the corresponding

Hamiltonian vector field for the symplectic two-form ω if

dH = iXH
ω (5)

Example 2 The most natural symplectic manifold is the cotangent bundle
of some other manifold, i.e. M = T ∗Q. This manifold has dimension n =
2 dimQ = 2d. In local coordinates (q1, . . . , qd, p1, . . . , pd), the symplectic form
is

ω = dp1 ∧ dq1 + · · ·+ dpd ∧ dqd (6)

The corresponding basis for the tangent space is (eq1 , . . . , eqd , ep1
, epd

), meaning
that

dqi(eqj ) = δi,j , dpi(epj ) = δi,j , dqi(epj ) = 0, dpi(eqj ) = 0

With this you can verify that the matrix1 of the form ω is

J =

[
0 −Id×d

Id×d 0

]
1In this example we do not worry about mixing together vectors and covectors in the

notation we use, in calculating things in coordinates it is however common to distinguish
these two by letting one kind be column vectors and the other kind be row vectors
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Let us check if the general abstract definition works in this case. We look at

iXω = ω(X, ·) = JX = dH = (
∂H

∂q
,
∂H

∂p
)T

which leads precisely to (4). �

Symplectic maps. A map Ψ : M → M on a symplectic manifold is one
which preserves the symplectic two-form. Mathematically, this just means that
for any point m ∈M , and two tangent vectors u, v in TmM , one has

ω(TmΨu, TmΨv) = ω(u, v)

The expression on the left hand side is called the pullback of the form ω one
used the notation Ψ∗ω, so that

(Ψ∗ω)(u, v) = ω(TmΨu, TmΨv)

Then to express preservation of ω we simply write Ψ∗ω = ω. Whenever the
map Ψ is the flow ϕt of a vector field X, we can use the Lie derivative of ω

LX(ω) =
d

dt

∣∣∣∣
t=0

ϕ∗tω,

so the flow of X preserves ω if and only if LX = 0. There is a very important
and beautiful formula for the Lie derivative (of any differential form) called
Cartan’s Magic Formula, see e.g. [2]

LXω = diXω + iXdω (7)

The verification this formula involves straightforward, but lengthy algebraic
manipulations and will therefore be omitted here.

Example 3 We consider again the canonical symplectic form (6) on T ∗Q. The
tangent map is then nothing else than the Jacobian matrix

TmΨ =
∂Ψ

∂(q, p)
=
∂ψ

∂y

where we write y = (q, p) ∈ R2d. So for the preservation of ω we get(
∂Ψ

∂y
u

)T

J
∂Ψ

∂y
v = uTJv, ∀u, v

which is equivalent to (
∂Ψ

∂y

)T

J
∂Ψ

∂y
= J

a condition you encounter frequently for instance in [1]. �
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Flows of Hamiltonian systems are symplectic maps. Suppose that we
have a Hamiltonian H on a symplectic manifold. The vector field XH resulting
from (5) can be inserted into (7)

LXH
ω = diXH

ω + iXH
dω

Now, the second term on the right hand side vanishes because ω is closed,
whereas the first term is, according to, (5) equal to d(dH) = 0. So we conclude
that LXH

ω = 0 which we have seen is equivalent to ϕt being symplectic.
Conversely, suppose that we had started from a vector field X whose flow

is symplectic, could we then conclude that X is a Hamiltonian vector field?
The answer follows again from Cartan’s Magic Formula, the condition LXω = 0
would then be equivalent to

diXω = 0

so the condition would be that iXω is a closed one-form. Vector fields with
this property are called locally Hamiltonian since a closed form will be exact on
some open set around any point m, but not necessarily in a global sense.
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