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1 Background material

This is section a summary of the results of the first and second chapter in
[13] and chapter 9 in [10] which are particularly relevant for the introduction
of Lie group methods.

1.1 Manifolds

Definition 1.1. [13] An m-dimensional manifold M is a topological space
covered by a collection of open subsets Wα ⊂M (coordinate charts) and maps
Xα : Wα → Vα ⊂ Rm one-to-one and onto, where Vα is an open, connected
subset of Rm. (Wα,Xα) define coordinates on M.
M is a smooth manifold if the maps Xαβ = Xβ ◦X−1α , are smooth where they
are defined, i.e. on Xα(Wα ∩Wβ) to Xβ(Wα ∩Wβ).

Example 1.2. Rm is a m-dimensional manifold covered with a single chart.

Example 1.3. The unit sphere Sm−1 := {x ∈ Rm |
∑m

i=1 x
2
i = 1} is a m−1-

dimensional manifold covered with two charts obtained by omitting the north
and south poles respectively. The coordinate maps are obtained considering
the stereographic projection from the north and south pole respectively.

Given two smooth manifolds M and N we say that F : M → N is
a smooth map if it is smooth in local coordinates. Introducing local coor-
dinates on the manifolds we get x ∈ M, x = (x1, . . . , xm), and y ∈ N ,
y = (y1, . . . , yn). Assume y = F (x) and yi = Fi(x) i = 1, . . . , n; if Fi is
smooth as a map from an open subset of Rm to R, then F is smooth also as
map between M and N .
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The rank of a map F : M → N is the rank of the Jacobian of F , the
map is said to be regular if its rank is constant.

A subset N ⊂M of a manifold which is a manifold in its own right is a
submanifold.

Definition 1.4. Submanifolds An immersed submanifold N of a manifold
M is a subset N ⊂M and a map F smooth and one-to-one F : Ñ → N ⊂
M with F everywhere of maximal rank and Ñ an n-dimensional manifold.

Example 1.5. M = R3 consider the parametrized curve φ(t) = (cos(t), sin(t), t)
(a circular elix, Figure 2 (left)), φ is one-to-one and φ̇ = (− sin(t), cos(t), 1)
is never 0 so the maximal rank condition is satisfied and the elix is an im-
mersed submanifold of R3.

1.2 Vector fields

A tangent vector to a manifold M at a point is the tangent to a smooth
curve passing through the point: given x ∈M and φ(t) ∈M the curve such
that φ(0) = x then

v|x :=
d

dt
φ(t)

∣∣∣∣
t=0

.

The tangent space to a m-dimensional manifold M at the point x is the
vector space of dimension m formed by the collection of the tangent vectors
at x and is denoted by TxM. Two curves φ(t) and γ(t) will give the same
tangent vector if they both pass through x at t = 0 with the same direction,
i.e. φ(0) = x = γ(0) and v = d

dt
φ(t)

∣∣
t=0

= d
dt
γ(t)

∣∣
t=0

.
The tangent bundle

TM = ∪x∈MTxM

is the collection of all tangent spaces, it can be given the structure of a
manifold of dimension 2m.

The tangent bundle to the circle can be identified with the cartesian
product of the circle with R, TS1 ' S1 × R. The tangent bundle to the
sphere TS2 cannot be identified with the cartesian product of the sphere and
R2.

A vector field on M is a section of the tangent bundle of M, i.e. is a
smoothly varying assignment of tangent vectors: v : M → TM such that
v(x) = v|x ∈ TxM. In local coordinates

v(x) =
m∑
i=1

ξi(x)
∂

∂xi
,
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Figure 1: The curve (t, cos(t)) is an immersed submanifold of R2. For each
point (t, cos(t)) of the curve the vector (1,− sin(t)) obtained taking deriva-
tives with respect to t, is the tangent vector at the point (t, cos(t)) to the
curve (after translation to the origin (0, 0)). We consider here t ∈ (0, 2π).

ξi(x) are smooth functions and ∂
∂xi

denote a basis of the tangent space TxM.
A curve φ : R → M is an integral curve of the vector field v if, when

φ(t) = x, the tangent to the curve at t coincides with the vector field at x,
i.e. φ̇(t) = v(x). This means that in local coordinates

dxi

dt
= ξi(x), xi = φi(t).

Example 1.6. We consider a vector field on R2,

v(x, y) = y∂x − x∂y,

v(x, y) =

(
ξ1(x, y)
ξ2(x, y)

)
=

(
y
−x

)
,

and to find the integral curve one has to solve

ẋ = y,
ẏ = −x,

obtaining
x(t) = cos(t)x0 + sin(t)y0,
y(t) = − sin(t)x0 + cos(t)y0.
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Figure 2: The curve (cos(t), sin(t), t) is an immersed submanifold of R2 (left).
The tangent spaces of this manifod are 1-dimensional and they are the lines
through the arrows of the vector field tangent to the curve (right). Differen-
tiating the curve we obtain (− sin(t), cos(t), 1), i.e. the length and direction
of these tangent vectors. We have considered here t ∈ (0, 4π).

If φ(t) is a maximal integral curve of the vector field we denote it with

φ(t) = exp(tv)x0, x0 = φ(0),

exp(tv)x0 is the flow generated by the vector field v, while v is called the
infinitesimal generator of the flow. This notation is justified by some funda-
mental properties of the flow resembling known properties of the exponential
mapping:

exp(tv) exp(sv)x0 = exp((t+ s)v)x0, exp(0v)x0 = x0,

exp(tv)−1x0 = exp(−tv)x0,
d

dt
exp(tv)x0 = v|exp(tv)x0

and also

v|x0 =
d

dt
exp(tv)x0

∣∣∣∣
t=0

, ∀x0 ∈M,

i.e. given the flow starting from x0 we can retrieve the vector field at x0 by
differentiating the flow with respect to t and then setting t = 0. The flow of
a vector field can be expanded as

exp(tv)x0 = x0 + t v|x0 +O(t2).

If x0 is such that v|x0 = 0 we say that x0 is a singularity or equilibrium point
of the vector field, and this implies

exp(tv)x0 = x0, ∀t.
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Points that are not equilibrium points are called regular.

Vector fields can operate on functions as derivations.
A derivation is a linear operator defined on an algebra1 A, D : A → A

satisfying the Leibniz rule, D(ab) = D(a)b + aD(b), for all a, b ∈ A, where
ab is the product of a and b in A.

Given f :M→ R the result of applying v as a derivation on f is a new
function v(f) such that

v(f(x)) =
m∑
i=1

ξi(x)
∂f

∂xi
=

d

dt
f(exp(tv)x)

∣∣∣∣
t=0

,

v(f) determines the infinitesimal change of f along the flow of v. It is easy
to verify that v acts as a derivation

1. v(λf + µg) = λv(f) + µv(g),

2. v(fg) = fv(g) + gv(f).

The Lie series expansion of f : M → R is an expansion of f evaluated
along the flow of v

f(exp(tv)x) = f(x) + tv(f(x)) +
1

2
t2v(v(f(x))) + . . . ,

converging for t sufficiently near 0. This is a way of reconstructing f along
the flow of v given v.

The Lie bracket of vector fields is an operation on the set of vector fields,
given two vector fields v and w, [v,w] is also a vector field. Such vector field
is identified by the way it is acting on smooth functions, i.e. for all smooth
f :M→ R,

[v,w](f) = v(w(f))−w(v(f)). (1)

In coordinates, assuming

v =
m∑
i=1

ξi
∂

∂xi
, w =

m∑
i=1

ηi
∂

∂xi
,

1An algebra is a vector space equipped with a multiplication operation, “ · ” : A×A →
A. This operation is distributive with respect to the addition of the vector space and is
compatible with the product by scalars in an appropriate sense.
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we obtain

[v,w] =
m∑
i=1

ξi
m∑
j=1

∂ηj

∂xi
∂

∂xj
−

m∑
i=1

ηi
m∑
j=1

∂ξj

∂xi
∂

∂xj

=
m∑
j=1

(
m∑
i=1

ξi
∂ηj

∂xi
−

m∑
i=1

ηi
∂ξj

∂xi

)
∂

∂xj
.

One can verify that the following important properties hold for the Lie
bracket of vector fields:

1. bilinearity: [λ1v1 + λ2v2,w] = λ1[v1,w] + λ2[v2,w].

2. skew-symmetry: [v,w] = −[w,v].

3. Jacobi identity: [v, [w,u]] + [u, [v,w]] + [w, [u,v]] = 0.

The derivative map or differential of a given map F :M→N is a map

dF : TM→ TN , s.t. dF |x : TxM→ TF (x)N

which is such that for any curve φ(t) such that φ(t)|t=0 = x and corre-
spondingly F (φ(t))|t=0 = F (x), with tangent vectors vx := d

dt
φ(t)

∣∣
t=0

and

wF (x) := d
dt
F (φ(t))

∣∣
t=0

we have

dF |x (vx) = wF (x).

The differential is a linear map and in coordinates it is represented by the
Jacobian of F . Only when F is one-to-one dF maps vector fields to vector
fields, [13].

Assume F is one-to-one and v a vector field on M and dF (v) a vector
field on N , one can prove that

F (exp(tv)x) = exp(td F (v))F (x). (2)

If w is also a vector field onM than one can also prove that the Lie bracket
of vector fields is invariant under dF , i.e.

dF ([v,w]) = [dF (v), d F (w)].
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1.3 Lie groups

A Lie group is a manifold G equipped with a smooth product operation “·”
which gives to G a group structure, e.g. there exists an identity element
e ∈ G and for any g ∈ G its inverse g−1 is in G.

Here follows a list of examples of Lie groups,

• (R, +)

• GL(n) = {A ∈ Mn×n|det(A) 6= 0} with the product between n × n
matrices as group product.

Charts

Given any local chart on G we can construct an atlas on the Lie group G
by left (or right) multiplication. Suppose (U,ϕ) is a chart about the identity
e ∈ G and ϕ : U → V , then a chart about g ∈ G, (Ug, ϕg) can be obtained
by

Ug := Lg(U) := {Lg(h) ∈ G |h ∈ U}, ϕg = ϕ ◦ Lg−1 : Ug → V.

One can prove that the maps

ϕg1 ◦ ϕ−1g2 : ϕg2(Ug1 ∩ Ug2)→ ϕg1(Ug1 ∩ Ug2),

are smooth because ϕg1 ◦ϕ−1g2 = ϕ◦L−1g1 ◦Lg2 ◦ϕ
−1 is a composition of smooth

maps.

Proposition 1.7. ([13] chapter II) Let G be a Lie group. If H ⊂ G is a
subgroup of G and H is topologically closed then H is a Lie subgroup of G.

Using the previous proposition it is easily verified that the following sets
are Lie subgroups of GL(n).

• SL(n) = {A ∈ Mn×n|det(A) = 1} with the product between n × n
matrices as group product,

• SO(n) = {A ∈ Mn×n|det(A) = 1, ATA = I} with the product be-
tween n× n matrices as group product,

• SP(2r) = {A ∈M2r×2r|ATJA = J} with the product between 2r × 2r
matrices as group product,

here Mn×n is the set of n× n real matrices.
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1.4 Transformation groups

A transformation group acting on a smooth manifold M is a Lie group G
and a smooth map Λ : G×M→M such that

• Λ(e, x) = x for all x ∈M.

• Λ(g,Λ(h, x)) = Λ(g · h, x) for all x ∈M and g, h ∈ G.

Λ is called a Lie group action. We say that the Lie group action is global
when Λ(g, x) is defined for all x ∈M and g ∈ G and local if it is defined on
an open subset V ⊂ G×M such that {e} ×M ⊂ V .

Some examples:

• GL(n,R) (or any of its subgroups) acting on Rn by matrix-vector mul-
tiplication.

• Any Lie group can act on itself by the group multiplication.

The set
Ox = {m ∈M|m = Λ(g, x), g ∈ G}

is called orbit of the Lie group action.

Example 1.8. Consider the group O(2) acting on R2 the orbits are circles
around the origin of R2. Analogously for O(n) acting on Rn the orbits are
spheres:

{x ∈ Rn | ‖x‖ = C }
with C a constant.

A Lie group action is said to be transitive when there is only one orbit,
Ox =M, i.e.

∀y ∈M ∃ g ∈ G, s.t.Λ(g, x) = y.

Example 1.9. The action of a Lie group G on itself by left multiplication is
transitive.

1.5 Homogeneous spaces

Given a Lie group G and a subgroup H we can define an equivalence relation
on G:

g ∼ g̃ ⇔ ∃ h̃ ∈ H s.t.g̃ = gh̃.

The equivalence classes, [g] = g · H, are called left-cosets

[g] = {gh |h ∈ H }.
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One can prove that if H is a closed subgroup then the quotient G/H (i.e.
G/ ∼) is a manifold called homogeneous space.

Recall that for G/H to be a group H needs to be a normal subgroup i.e.
gHg−1 = H for all g ∈ G.

In a homogeneous space the action Λ : G×G/H→ G/H, Λ(g, [g̃]) = [gg̃]
is transitive. In fact for any [g1] and [g2] in G/H it exists g ∈ G such that
g = g2g

−1
1 and Λ(g, [g1]) = [g2].

Example 1.10. Relevant homogeneous spaces. Prove that the sphere is
an homogeneous space S2 = SO(3)/SO(2).

More in general SO(n)/SO(p) for p < n is another interesting homoge-
neous space called Stiefel manifold and can be identified with the set of all
n× p matrices with p orthonormal columns.

Analogously O(n)/(O(p)×O(n−p)) is the homogeneous space also known
as Grassmann manifold.

Definition 1.11. Given x ∈M and Λ a Lie group action onM the isotropy
subgroup of x ∈M is

Gx = {g ∈ G |Λ(g, x) = x}.

Recall Proposition 1.7, this implies that Gx is a Lie subgroup.

Theorem 1.12. A Lie group G acts globally and transitively on M if and
only if M' G/H is isomorphic to the homogeneous space obtained as G/H
with H = Gx the isotropy subgroup of any chosen x ∈M.

So any transitive Lie group action corresponds to a homogeneous space
and viceversa.

1.6 Lie algebra of a Lie group

A Lie algebra g ia a vector space with a bracket operation:

• [·, ·] : g× g→ g is a bilinear map

• is skew-symmetric: [u, v] = −[v, u], ∀u, v ∈ g

• satisfies the Jacobi identity: [u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0
∀u, v, w ∈ g.

The Lie algebra of a given Lie group G is the tangent space at the identity
element e, g := TeG.

For matrix Lie groups the Lie algebra is typically a linear vector subspace
of Mn×n.

One can verify that
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• the Lie algebra of (R, +) is R

• the Lie algebra of GL(n) is gl(n) = Mn×n,

• the Lie algebra of SL(n) is sl(n) = {A ∈Mn×n|trace(A) = 0}.

Exercise 1.13. The Lie algebra of Sp(2r) is

sp(2r) = {A ∈M2r×2r|AJ + JAT = O}.

Proof. Consider A(t) ∈ Sp(2r) A(0) = I, we get V = d
dt
A(t)

∣∣
t=0
∈ sp(2r).

We differentiate A(t)JA(t)T = J and obtain

ȦJAT + AJȦT = O.

Setting t = 0 we obtain
V J + JV T = O.

One way to derive the Lie bracket of a Lie algebra g of a Lie group G is
by the identification of TeG with the set of left (or right) invariant vector
fields on G. This set is naturally a Lie algebra with the Lie bracket of vector
fields (1) as bracket operation. This way we will naturally obtain the bracket
operation on TeG.

Consider the left multiplication of the Lie group Lg : G→ G, Lg(h) = g h,
consider also the derivative mapping or differential of Lg, dLg|x : TxG →
TgxG.

Definition 1.14. A vector field on G, v, is left invariant if

dLg(v) = v,

and fiberwise
dLg|x (v(x)) = v(Lg(x)).

Since for a left invariant vector field v(e) = A implies dLg|e (v(e)) = v(g),
once we know how the vector field is at the identity, e, via left multiplication
we know how it is everywhere. For this reason we can identify the tangent
space at the identity of the Lie group G, i.e. the Lie algebra g, with the set
of left invariant vector fields. An analogous definition and identification can
be given for right invariant vector fields.

The Lie algebra can be also used to describe the tangent space to G at
any point. Here is the case of the orthogonal group.
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Example 1.15. Consider γ(t) ∈ O(n). γ(t)Tγ(t) = I assume γ(0) = Q and
γ̇(0) = W . By differentiating with respect to t and setting t = 0 we obtain
W TQ+QTW = O. Set A := QTW and substitute W = QA in the previous
equation, obtaining AT + A = O. So we obtain a characterization of the
tangent space of O(n) at Q by means of so(n):

TQ O(n) = {W = QA |A ∈ so(n)}.

Analogous results can be obtained for other matrix Lie groups.

Recall form chapter I in [13]: given a mapping F :M→N the derivative
mapping dF does not map vector fields to vector fields unless F is one-to-
one. Assume F is one-to-one and v a vector field onM and dF (v) a vector
field on N , one can prove that

Proposition 1.16.

F (exp(tv)x) = exp(td F (v))F (x). (3)

If w is also a vector field on M than one can also prove that the Lie
bracket of vector fields is invariant under dF , i.e.

Proposition 1.17.

dF ([v,w]) = [dF (v), d F (w)].

If M = G (a Lie group) the right multiplication Lg : G → G is one-
to-one. Assume v and w are left invariant vector fields: dLg(v) = v and
dLg(w) = w, then

dLg([v,w]) = [dLg(v), d Lg(w)] = [v,w],

so that also the Lie bracket [v,w] of the two left invariant vector fields is left
invariant. The set of left invariant vector fields on G, XL(G), is closed under
the Lie-Jacobi bracket of vector fields and is therefore a Lie algebra.

Identification of TeG with XL(G)

Let a ∈ TeG, we consider the vector field on G defined by

va(g) := dLg|e (a),

and dLg|e : TeG → TgG. The vector field va is left invariant. In fact
by the definition va(Lg(h)) = va(gh)) = dLgh|e (a) = d (Lg ◦ Lh)|e (a) =

11



dLg|h ◦ dLh|e (va(e)). Substituting va(e) = a, and applying the definition of
va one more time we get va(Lg(h)) = dLg|h (va(h)), which is the definition
of left invariance 1.14.

So we have a map ζ1 : TeG→ XL(G). On the other hand we can construct
the map

ζ2 : XL(G)→ TeG, ζ2(w) := w(e).

It can be seen that
ζ1 ◦ ζ2 = id, ζ2 ◦ ζ1 = id,

and that we so have an isomorphism of vector spaces between TeG and XL(G).
So the Lie bracket of TeG can be defined to be

[a, b] := [va,vb](e) (4)

where at the left hand side the symbol [·, ·] denotes the Lie-Jacobi bracket of
vector fields.

Example 1.18. Consider gl(n) and the bracket of vector fields by a similar
argument to that used in example 1.15 we obtain that a left invariant vector
field vA on GL(n) has coordinates given by the matrix product XA with
A ∈ gl(n) and X ∈ GL(n). Consider two left invariant vector fields vA and
vB and write them as derivation operators:

vA(X) =
n∑

i,j,k=1

xi,kak,j
∂

∂xi,j
, vB(X) =

n∑
i,j,k=1

xi,kbk,j
∂

∂xi,j
,

here we denote with ai,j = (A)i,j the (i, j)-element of the matrix A. Comput-
ing the Lie bracket of the two vector fields we obtain

[vA,vB](X) =
n∑

i,j,k=1

xi,kak,j

n∑
s=1

bj,s
∂

∂xi,s
−

n∑
l,r,s=1

xl,rbr,s

n∑
j=1

as,j
∂

∂xl,j

=
n∑

i,k,s=1

xi,k(AB −BA)k,s
∂

∂xi,s
.

The Lie-Jacobi bracket of the two vector fields is a vector field with coor-
dinates the matrix commutator of A and B: [A,B] = AB − BA and, as
expected,

[A,B] = [vA,vB](I).

Here at the left hand side the symbol [·, ·] denotes the matrix commutator and
at the right hand side the Lie-Jacobi bracket of vector fields. The situation
is analogous for the case of right invariant vector fields a part from a change
of sign.
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1.7 The exponential map

Consider v a right invariant vector field on G and the right multiplication of
the Lie group Rg. Using (3) we obtain

Rg(exp(tv)e) = exp(t dRg(v))g

and further using the right invariance of v on the right hand side we get

(exp(tv)e)g = exp(tv)g,

so that the left multiplication of g by the flow through e of v is equal to the
flow through g of v. We therefore can identify the flow of the right invariant
vector field to be the corresponding one parameter subgroup2 of G:

exp(tv) := exp(tv)e.

We can also define the exponential map exp : g→ G as

v ∈ g 7→ exp(tv)e|t=1 ∈ G.

Example 1.19. The flow of a right invariant vector field

vA =
∑
i,j,k

ai,jxk,j
∂

∂xi,j
,

is γ(t) such that γ̇ = vA(γ(t)), in coordinates

γ̇i,j =
n∑

i,j=1

(
n∑
k=1

ai,kγk,j(t)

)
, i.e. γ̇ = Aγ,

and γ(t) = exp(tA)γ(0). For the left invariant vector fields the flow is instead
of the type η(t) = η(0) exp(tA).

Exercise 1.20. Show that exp(O) = e, where O is the zero element in g and
e is the identity element of G. Show that the derivative mapping of exp at O
is the identity mapping in g.

The results of the previous exercise guarantee that exp is a local diffeo-
morphism from a neighborhood of O ∈ g to a neighborhood of e ∈ G. This
follows from the inverse function theorem. (See also [7] chapter IV.6 on this
topic.)

The exponential mapping can be used to put local coordinates on the Lie
group by means of the Lie algebra.

2One parameter subgroup: a subgroup depending on one parameter, in this case t.
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Theorem 1.21. Let G be a connected Lie group with Lie algebra g. Every
group element can be written as a product of exponentials:

g = exp(V1) exp(V2) · · · exp(Vk),

for V1, . . . , Vk ∈ g.

1.8 Some properties of the exponential in matrix Lie
groups

We want to consider
d

dt
exp(σ(t))e

∣∣∣∣
t=0

,

where σ(t) is a curve in gl(n). We proceed giving two Lemmas which are
used for this aim.

Lemma 1.22. Variation of constants formula.
The solution of the differential equation

u̇ = Au+ w, u(0) = u0,

where A is a m×m constant matrix and u0, w ∈ Rm are fixed, is

u(t) = etAu0 +

∫ t

0

e(t−x)Awdx.

Proof. To find the solution of the considered differential equation we use the
integrating factor e−xA, we obtain

e−xAu̇(x)− Ae−xAu(x) = e−xAw.

We now integrate between 0 and t and obtain

e−tAu(t)− u(0) =

∫ t

0

e−xAwdx,

and multiplying on both sides with etA we obtain the result.

Corollary 1.23. If w ∈ Rm and A is a m×m matrix we have that∫ t

0

e(t−x)Awdx =
etz − 1

z

∣∣∣∣
z=A

w.
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Proof. We expand the integral at the left hand side of the equality by using
the Taylor series of the exponential mapping and we obtain∫ t

0

e(t−x)Awdx =
∞∑
i=0

∫ t

0

(t− x)i

i!
Aiwdx,

and since ∫ t

0

(t− x)i

i!
wdx =

ti+1

(i+ 1)!
w,

we obtain ∫ t

0

e(t−x)Awdx =
∞∑
i=0

Ai
ti+1

(i+ 1)!
w =

∞∑
k=1

Ak−1
tk

k!
w.

Now one can verify that

etz − 1

z
=
∞∑
k=1

zk−1
tk

k!
,

(use the expansion for etz), which implies that∫ t

0

e(t−x)Awdx =
etz − 1

z

∣∣∣∣
z=A

w.

This Lemma is used in the proof of the next Lemma.

Lemma 1.24. Assume σ(t) is a n× n matrix for each t then we have that(
d

dt
eσ(t)

)
e−σ(t) =

ez − 1

z

∣∣∣∣
z=adσ

(σ̇) , (5)

where for two n×n matrices B and C we have adB(C) = [B,C] = BC−CB,
where [·, ·] is the matrix commutator.

Proof. Consider B(s, t) =
(
d
dt
esσ(t)

)
e−sσ(t). By differentiating with respect

to s we obtain

∂

∂s
B(s, t) =

(
d

dt

(
σ(t)esσ(t)

))
e−sσ(t) −

(
d

dt
esσ(t)

)
e−sσ(t)σ(t)

= σ̇(t)esσ(t)e−sσ(t) + σ(t)

(
d

dt
esσ(t)

)
e−sσ(t) −B(s, t)σ(t)

= σ̇(t) + [σ(t), B(s, t)].
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This means that

∂

∂s
B(s, t) = adσ(B) + σ̇,

and we have B(0, t) = O. Note that adσ is a linear operator acting on n× n
matrices, and can be represented as a n2×n2 matrix. Then taking A = adσ(t),
in Lemma 1.22 and Corollary 1.23 we have

B(s, t) =
esz − 1

z

∣∣∣∣
z=adσ(t)

(σ̇(t)) .

From Lemma 1.24 we have that

d

dt
eσ(t) =

ez − 1

z

∣∣∣∣
z=adσ

(σ̇) · eσ(t),

and for ease of notation we define

dexpσ(t) (σ̇(t)) : =
ez − 1

z

∣∣∣∣
z=adσ

(σ̇)

=
∞∑
k=1

1

k!
adk−1σ (σ̇(t))

= σ̇(t) +
1

2
[σ(t), σ̇(t)] +

1

3!
[σ(t), [σ(t), σ̇(t)]] + . . .

2 Integration methods on manifolds

2.1 Introduction and motivation

We are interested in deriving intrinsic numerical integration methods for the
problem

ẏ = F (y) (6)

y(t0) = y0, (7)

with y0 ∈ M, M a smooth manifold, and F a vector field on M, i.e.
F (y(t)) ∈ Ty(t)M for all t. Using a classical Runge-Kutta or multi-step
method to approximate this problem does not make sense unless the mani-
fold is embedded in a vector space of larger dimension where operations like
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sum and multiplication by scalar are well defined. Even when M is a sub-
manifold of such a vector space a Runge-Kutta method would not produce
approximations on M in general. Our aim is to design numerical methods
which are applicable to ODEs on manifolds and by construction produce
approximations on the manifold.

Example 2.1. Consider the following differential equation on the orthogonal
group

Ẏ = A(Y ) · Y, Y (0) = Y0, (8)

where Y and A(Y ) are n × n matrices, A(Y ) is skew-symmetric for all Y
and Y0 is an orthogonal matrix. The solution of (8) is an orthogonal matrix
in fact if we take the derivative w.r.t. time of Y (t)TY (t) we obtain

d

dt
Y (t)TY (t) = Ẏ TY + Y T Ẏ = Y TA(Y )TY + Y TA(Y )Y

= −Y TA(Y )Y + Y TA(Y )Y = 0,

which means that Y (t)TY (t) is constant and therefore

Y (t)TY (t) = Y T
0 Y0 = I, ∀t,

i.e. Y (t) is an orthogonal matrix for all t. The format (8) is a consequence
of the characterization of the tangent space discussed in example 1.15 and is
valid in general for A(Y ) belonging to the Lie algebra g of a Lie group G and
Y0 ∈ G.

2.2 Methods based on frame vector fields

Definition 2.2. A set of vector fields {E1, . . . Ed} on the manifold M of
dimension m ≤ d is a set of frame vector fields if

TxM = span{E1|x , . . . Ed|x}, ∀x ∈M.

Given any vector field F on M we have

F (y) =
d∑
i=1

fi(y)Ei(y).

Definition 2.3. We denote with Fp the vector field

Fp(x) =
d∑
i=1

fi(p)Ei(x)

we say that Fp is the vector field F frosen at the point p.
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Given at M is a manifold with a set of frame vector fields we can define
intrinsic Runge-Kutta like methods as follows:

Commutator-free method

for r = 1 : s do
Yr = exp(

∑s
k=1 α

k
rJFk) · · · exp(

∑s
k=1 α

k
r1Fk)(p)

Fr = hFYr = h
∑d

i=1 fi(Yr)Ei
end

y1 = exp(
∑s

k=1 β
k
JFk) · · · exp(

∑s
k=1 β

k
1Fk)p

Here n counts the number of time steps and h is the step-size of integration.
The integrator has s stages and parameters αkrJ , βkJ . Each new stage value is
obtained as a composition of J exponentials of linear combinations of vector
fields frozen at the previously computed stage values.

In the following tableaus we report the coefficients of a method of order
3 and a method of order 4. The method of order 3 requires the computation
of one exponential of each internal stage value and the composition of two
exponentials for updating the solution. In the order 4 method the first three
stage values require one exponential each, while the fourth stage and the
solution update require two exponentials.

0
1
3

1
3

2
3

0 2
3

1
3

0 0

− 1
12

0 3
4

0
1
2

1
2

1
2

0 1
2

1 1
2

0 0

−1
2

0 1
1
4

1
6

1
6
− 1

12

− 1
12

1
6

1
6

1
4

Example 2.4. Let M be a manifold acted upon transitively by a Lie group
G. Denote with Λ : G×M→M the Lie group action. Suppose E1, . . . , Ed
a basis of the Lie algebra then FE1 , . . . FEd obtained by

FEi(x) =
d

dt
Λ(exp(tEi), x)

∣∣∣∣
t=0

,

are a set of frame vector fields.
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In particular for matrix Lie groups consider the vector field A(Y )Y of
equation (8). Here A(y) ∈ g and A(Y ) =

∑d
i=1 ai(y)Ei with E1, . . . , Ed a

basis of the Lie algebra3. The vector field frosen at a point P ∈ G is simply
A(P )Y .
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