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1 Introduction

Consider the ordinary differential equation (ODE)

ẏ = f(y), y(0) = y0 ∈ Rn,

we have seen the the following definition of first integral (or invariant) of the ODE:

Definition 1.1. A function I : Rm → R is a first integral (or invariant) of the ODE if
and only if

∇I(y)T f(y) = 0, ∀y. (1)

This implies that I is constant along solutions of the differential equations i.e.

d I(y(t))

dt
= ∇ I(y(t))T f(y(t)) = 0, ∀t > 0.

We distinguish between linear, quadratic and polynomial invariants of degree higher
than 2. Linear invariants are of the type

I(y) = dT y, d ∈ Rn.

Quadratic invariants are of the type

Q(y) = yTCy, C = CT .

1
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An example of a polynomial invariant of degree higher than 2 is the determinant of a
matrix valued solution of a matricial ODE of the type

ẏ = A(y)y, y(0) = I, trace(A) = 0, det(y) = 1,

and A n× n, n ≥ 3.
We have seen that all Runge-Kutta methods preserve all linear invariants, and that

a special class of Runge-Kutta methods preserve all quadratic invariants. We will next
show that no Runge-Kutta method can preserve all polynomial invariants of degree
grater than or equal to 3. To this aim we will provide a counter example.

For the counter example we need two preliminary lemmas.

Lemma 1.2. If ẏ = By, y(0) = y0 with B an m×m matrix not depending on y and on
t, then using a Runge-Kutta method on this system of equations gives yn+1 = R(hB)yn
where R(z) is a rational function (the stability function of the Runge-Kutta method.1.

Proof. Consider simply the scalar ode u̇ = λu, u(0) = u0, applying the Runge-Kutta
method gives

un+1 = un + h
s∑
i=1

biKi

Ki = λ
(
un + h

s∑
j=1

ai,jKj

)
, i = 1, . . . , s.

Consider the vector
~KT := [K1, . . . ,Ks].

The stages solve the linear algebraic equation

(I − hA) ~K = λun1

with 1 the vector in Rs with components equal to 1. Then

un+1 = un + hbT ~K

and
un+1 = un

(
1 + hλbT (I − hλA)−11

)
.

The expression in the parenthesis is the determinant of the rank one matrix

I + hλ(I − hλA)−11bT

which can be written as a quotient of determinants so

un+1 = un
det(I − hλA+ hλ1bT )

det(I − hλA)
.

Which shows that un+1 = R(hλ)un with R a rational function (a quotient of two poly-
nomials). The generalization to linear systems of ODEs involves some extra linear alge-
bra.

1See note in lecture 2, section 5
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Lemma 1.3. R(z) is an analytic function s.t. R(0) = 1 and R′(0) = 1 and satisfying

R(z)2R(−2z) ≡ 1

if and only if
R(z) = ez

.

Proof. By taking logarithms we have

ψ(z) := log(R(z)) =
∞∑
k=0

ψk z
k,

so R(z) = eψ(z). By the properties of logarithms we have

log(R(z)2R(−2z)) = 2 log(R(z)) + log(R(−2z)) = 2ψ(z) + ψ(−2z) = 0.

So expanding the series and collecting terms we get

2ψ(z) + ψ(−2z) =
∞∑
k=0

ψk z
k(2− 2k) = 0,

since (2 − 2k) 6= 0 for k ≥ 2, ψk must be zero for k ≥ 2. Also since R(0) = 1 = eψ(0)

ψ0 = 0 and
ψ(z) = ψ1 z,

finally R′(0) = ψ1e
ψ1z
∣∣
z=0

= 1 gives ψ1 = 1 so

R(z) = ez.

Remark: No Runge-Kutta method has the exponential function as a stability function.

Example 1.4. We consider the following simple ODE

ẋ = x

ẏ = y

ż = −2z

with initial value x(0) = x0, y(0) = y0, z(0) = z0. We observe that

x(t)y(t)z(t) = etx0e
ty0e

−2tz0 = x0y0z0

is a cubic invariant of the flow. The equation can be written in the form

ẋ = B x, x(0) = x0,
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where B is the diagonal matrix with diagonal entries 1, 1,−2. Applying a Runge-Kutta
method to this problem amounts to compute

x1 = R(hB)x0,

where R(z) is the stability function of the Runge-Kutta method, R(0) = 1 and R′(0) = 1,
and R(z) is a rational function. In particular multiplying together the components of x1

we obtain
x1y1z1 = R(h)2R(−2h)x0y0z0.

The invariant is preserved by the Runge-Kutta method if and only if

R(h)2R(−2h) = 1, ∀h.

Now since from the Lemma 1.3 this can happen only if R(z) = ez, and since no Runge-
Kutta method has ez has stability function, then the preservation of this cubic invariant
cannot be achieved with Runge-Kutta methods.

2 Discrete Gradients

We consider a general ODE problem with an invariant I. It is always possible to write
the ODE in the following form

ẏ = f(y) = S(y)∇I(y), y(0) = y0, (2)

where S(y) is a skew-symmetric matrix. A choice for S(y), under the assumption that
∇I(y) does not vanish, is

S(y) =
1

‖∇I‖2
(f(y)∇I(y)T −∇I(y)f(y)T ),

[13], see the same reference for a discussion on the boundedness of S(y) defined above
around non degenerate fixed points of ∇I(y).

For problems reformulated in the form (2) it is is always possible to build an energy-
preserving method by approximating ∇I by a so called discrete gradient.

Definition 2.1. (Gonzalez 96, [8]).
If I is differentiable then ∇̄I : Rn×Rn → Rn is a discrete gradient if I is continuous

and {
∇̄I(u, v)T (v − u) = I(v)− I(u)
∇̄I(u, u) = ∇I(u)

Example 2.2. Examples of discrete gradients

1.

∇̄I(u, v) =

∫ 1

0
∇I ((1− ξ)u+ ξv) dξ

is the average vector field discrete gradient;
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2.

∇̄I(u, v) = ∇I(
u+ v

2
) +

I(v)− I(u)−∇I(u+v
2

T
(v − u)

‖v − u‖2
(v − u),

this discrete gradient is due to Gonzalez.

Theorem 2.3. A numerical integrator having the format

yn+1 = yn + hS̄(yn, yn+1)∇̄I(yn, yn+1),

where S̄(yn, yn+1) ≈ S(y) is a skew-symmetric matrix and ∇̄I(yn, yn+1) ≈ ∇I in a
neighborhood of yn, is an energy-preserving integrator.

Proof. Using the definition of discrete gradient and the skew-symmetry of S̄(yn, yn+1)
we get

I(yn+1)−I(yn) = ∇̄I(yn, yn+1)T (yn+1−yn) = h∇̄I(yn, yn+1)T S̄(yn, yn+1)∇̄I(yn, yn+1) = 0.

Example 2.4. The method

yn+1 = yn + hS(
yn + yn+1

2
)

∫ 1

0
∇I ((1− ξ)u+ ξv) dξ,

fits the framework of the previous theorem and is an energy preserving method. By using
Taylor expansion it is possible to show that this method has order 2.

3 Preservation of the energy of ODEs in canonical Hamil-
tonian form

Consider the ODE ẏ = f(y), y(0) = y0, we call the integration method

yn+1 − yn
∆t

=

∫ 1

0
f((1− ξ)yn + ξyn+1) dξ, (3)

”Avegrage Vector Field method”, [18].
Consider canonical Hamiltonian systems in the form

ẏ = f(y) = J−1∇H(y), y(0) = y0. (4)

Theorem 3.1. Let yn be the solution of the average vector field (AVF) method (18)
applied to equation (4). Then the energy H is preserved exactly :

H(yn+1) = H(yn).



ENERGY PRESERVATION IN NUMERICAL INTEGRATORS 6

Proof H is preserved since

Ḣ = (∇H)T J−1∇H = 0. (5)

It is possible to prove that this method has order 2 by usual Taylor expansion.

Corollary 3.2. Given b1, . . . , bs and c1, . . . , cs defining a quadrature formula of polyno-
mial order m− 1. Consider an ODE of the type (4) where H is a polynomial of degree
m. Then the s-stages Runge-Kutta method

yn+1 = yn + h

s∑
i=1

bi f(yn + (yn+1 − yn)ci)

preserves H and has order min (m, 2).

Proof For polynomial Hamiltonians of degree m, f = J−1∇H has polynomial com-
ponents of degree at most m− 1 and

h

s∑
i=1

bi f(yn + (yn+1 − yn)ci) =

∫ 1

0
f((1− ξ)yn + ξyn+1) dξ.

So the given quadrature formula coincides with the exact integral, and the given method
coincides with the AVF method.

4 Hamiltonian PDEs and preservation of energy

This part is taken from [6]. We consider evolutionary PDEs with independent variables
(x, t) ∈ Rd × R, functions u belonging to a Banach space B with values2 u(x, t) ∈ Rm,
and PDEs of the form

u̇ = D δH
δu

, (6)

where D is a constant linear differential operator, the dot denotes ∂
∂t , and

H[u] =

∫
Ω
H(x;u(n)) dx (7)

where Ω is a subset of Rd ×R, and dx = dx1dx2 . . . dxd.
δH
δu is the variational derivative

of H in the sense that
d

dε
H[u+ εv]

∣∣
ε=0

=

∫
Ω

δH
δu

v dx, (8)

2Although it is generally real-valued, the function u may also be complex-valued, for example, the
nonlinear Schrödinger equation.
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for all u, v ∈ B (cf. [17]). For example, if d = m = 1,

H[u] =

∫
Ω
H(x;u, ux, uxx, . . . ) dx, (9)

then
δH
δu

=
∂H

∂u
− ∂x

(
∂H

∂ux

)
+ ∂2

x

(
∂H

∂uxx

)
− · · · , (10)

when the boundary terms are zero.
Similarly, for general d and m, we obtain

δH
δul

=
∂H

∂ul
−

d∑
k=1

∂

∂xk

(
∂H

∂ul,k

)
+ . . . , l = 1, . . . ,m. (11)

We consider Hamiltonian systems of the form (6), where D is a constant skew sym-
metric operator (cf. [17]) and H the energy (Hamiltonian). In this case, we prefer to
designate the differential operator in (6) with S instead of D. The PDE preserves the
energy because S is skew-adjoint with respect to the L2 inner product, i.e.∫

Ω
uSu dx = 0, ∀u ∈ B. (12)

The system (6) has I : B → R as an integral if İ =
∫

Ω
δI
δuS

δH
δu dx = 0.

Integrals C with D δC
δu = 0 are called Casimirs.

Besides PDEs of type (6) where D is skew-adjoint, we also consider PDEs of type
(6) where D is a constant negative (semi)definite operator with respect to the L2 inner
product, i.e. ∫

Ω
uDu dx ≤ 0, ∀u ∈ B. (13)

In this case, we prefer to designate the differential operator D with N and the function
H is a Lyapunov function, since then the system (6), i.e.

u̇ = N δH
δu

, (14)

has H as a Lyapunov function, i.e. Ḣ =
∫

Ω
δH
δuN

δH
δu dx ≤ 0. We will refer to systems

(6) with a skew-adjoint S and an energy H as conservative and to systems (6) with a
negative (semi)definite operator N and a Lyapunov function H as dissipative.

Conservative PDEs (6) can be semi-discretised in “skew-gradient” form

u̇ = S∇H(u), ST = −S, (15)

when D = S is skew-adjoint. u ∈ Rk, and here, and in the following, we will always
denote the discretisations with bars. H is chosen in such a way that H∆x is an approx-
imation to H.
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Lemma 4.1. Let

H[u] =

∫
Ω
H(x;u(n))dx, (16)

and let H∆x be any consistent (finite difference) approximation to H (where ∆x :=

∆x1∆x2 . . .∆xd). Then the discrete analogue of the variational derivative
δH
δu

is given

by ∇H.

The proof is given in the appendix.
It is worth noting that the above lemma also applies directly when the approximation

to H is obtained by a spectral discretization, since such an approximation can be viewed
as a finite difference approximation where the finite difference stencil has the same
number of entries as the number of grid points on which it is defined.

The operator ∇ is the standard gradient, which replaces the variational derivative
because we are now working in a finite (although large) number of dimensions (cf. e.g.
(11)).

When dealing with (semi-)discrete systems we use the notation uj,n where the index
j corresponds to increments in space and n to increments in time. That is, the point
uj,n is the discrete equivalent of u(a + j∆x, t0 + n∆t) where x ∈ [a, b] and where t0 is
the initial time. In most of the equations we present, one of the indices is held constant,
in which case, for simplicity, we drop it from the notation. For example, we use uj to
refer to the values of u at different points in space and at a fixed time level.

Theorem 4.2. Let S (resp. N ) be any consistent constant skew (resp. negative-definite)
matrix approximation to S (resp. N ). Let H∆x be any consistent (finite difference)
approximation to H. Finally, let

f(u) := S∇H(u) (resp. f(u) := N∇H(u)), (17)

and let un be the solution of the average vector field (AVF) method

un+1 − un
∆t

=

∫ 1

0
f((1− ξ)un + ξun+1) dξ, (18)

applied to equation (17). Then the semidiscrete energy H is preserved exactly (resp.
dissipated monotonically):

H(un+1) = H(un) (resp H(un+1) ≤ H(un)).

H is preserved since

Ḣ =
(
∇H

)T S∇H = 0. (19)

Discretisations of this type can be given for pseudospectral, finite-element, Galerkin and
finite-difference methods (cf. [15, 16]); for simplicity’s sake, we will concentrate on finite-
difference methods, though we include one example of a pseudospectral method for good
measure.
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The AVF method was recently [18] shown to preserve the energy H exactly for any
vector field f of the form f(u) = S∇H(u), where H is an arbitrary function, and S is
any constant skew matrix 3. The AVF method is related to discrete gradient methods
(cf. [13]).

If D is a constant negative-definite operator, then the dissipative PDE (6) can be
discretized in the form

u̇ = N∇H(u), (20)

where N is a negative (semi)definite matrix and H is a discretisation as above.
That is, H is a Lyapunov-function for the semi-discretized system, since

Ḣ =
(
∇H

)T N∇H ≤ 0. (21)

The AVF method (18) again preserves this structure, i.e. we have

H(un+1) ≤ H(un), (22)

and H is a Lyapunov function for the discrete system. Taking the scalar product of (18)
with

∫ 1
0 ∇H((1− ξ)un + ξun+1) dξ on both sides of the equation yields

1

∆t

∫ 1

0
(un+1 − un) · ∇H((1− ξ)un + ξun+1) dξ ≤ 0, (23)

i.e.
1

∆t

∫ 1

0

d

dξ
H((1− ξ)un + ξun+1) dξ ≤ 0, (24)

and therefore
1

∆t
(H(un+1)−H(un)) ≤ 0. (25)

Our purpose is to show that the procedure described above, namely

1. Discretize the energy functional H using any (consistent) approximation H∆x

2. Discretize D by a constant skew-symmetric (resp. negative (semi)definite) matrix

3. Apply the AVF method

can be generally applied and leads, in a systematic way, to energy-preserving methods
for conservative PDEs and energy-dissipating methods for dissipative PDEs. We shall
demonstrate the procedure by going through several well-known nonlinear and linear
PDEs step by step. In particular we give examples of how to discretise nonlinear conser-
vative PDEs (in subsection 2.1), linear conservative PDEs (in subsection 2.2), nonlinear
dissipative PDEs (in subsection 3.1), and linear dissipative PDEs (in subsection 3.2).

3The relationship of (18) to Runge-Kutta methods was explored in [5].
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5 Conservative PDEs

Example 5.1. Sine-Gordon equation:
Continuous:

∂2ϕ

∂t2
=
∂2ϕ

∂x2
− α sinϕ. (26)

The Sine-Gordon equation is of type (6) with

H =

∫ [
1

2
π2 +

1

2

(
∂ϕ

∂x

)2

+ α (1− cosϕ)

]
dx, (27)

where u :=

(
ϕ
π

)
and

S =

(
0 1
−1 0

)
. (28)

(Note that it follows that π = ∂ϕ
∂t .)

Boundary conditions: periodic, u(−20, t) = u(20, t).
Semi-discrete: finite differences4

Hfd =
∑
j

[
1

2
π2
j +

1

2(∆x)2
(ϕj+1 − ϕj)2 + α (1− cosϕj)

]
. (29)

S =

(
0 id
−id 0

)
. (30)

The resulting system of ordinary differential equations is[
ϕ̇
π̇

]
= S∇Hfd =

[
π

1
∆x2Lϕ− α sinϕ

]
, (31)

where L is the circulant matrix

L =


−2 1 1

1
. . .

. . .
. . .

. . . 1
1 1 −2

 .

We have used the bold variablesϕ and π for the finite dimensional vectors [ϕ1, ϕ2, . . . , ϕN ]>,
et cetera, which replace the functions π and ϕ in the (semi-) discrete case. Where nec-
essary, we will write ϕn, et cetera to denote the vector ϕ at time t0 + n∆t.

4Summations of the form
∑

j mean
∑N−1

j=0 unless stated otherwise.
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The integral in the AVF method can be calculated exactly to give5

1

∆t

[
ϕn+1 −ϕn
πn+1 − πn

]
= (32)[

(πn+1 + πn)/2
L(ϕn+1 +ϕn)/2− α(cosϕn+1 − cosϕn)/(ϕn+1 −ϕn)

]
.

Semi-discrete: spectral discretization
Instead of using finite differences for the discretization of the spatial derivative in

(27), one may use a spectral discretization. This can be thought of as replacing ϕ with
its Fourier series, truncated after N terms, where N is the number of spatial intervals,
and differentiating the Fourier series. This can be calculated, using the discrete Fourier
transform6 (DFT), as F−1

N dNFNϕ where FN is the matrix of DFT coefficients with
entries given by [FN ]n,k = ωnkN , ωN = eθ and θ = i2π/l where l = b−a is the extent of the
spatial domain; that is l/N = ∆x. Additionally, [F−1

N ]n,k = ω−nkN and dN is a diagonal
matrix whose (non-zero) entries are the wave-numbers θk = i2πk/l, k = 1, . . . , N , i.e.,
[dN ]k,k = θk. (For more details on properties of the DFT and its application to spectral
methods see [2] and [20].)

Hsp =
∑
j

[
1

2
π2
j +

1

2

[
F−1
N dNFNϕ

]2
j

+ α(1− cosϕj)

]
, (33)

S =

(
0 id
−id 0

)
. (34)

The resulting system of ODEs is then given by[
ϕ̇
π̇

]
= S∇Hsp =

[
π

−(F−1
N DNFN )>(F−1

N dNFNϕ)− α sinϕ

]
, (35)

where [DN ]n,k = θk. Again, the integral in the AVF method can be calculated exactly
to give

ϕn+1 −ϕn
∆t

= (πn+1 + πn)/2, (36)

πn+1 − πn
∆t

= −(F−1
N DNFN )>(F−1

N dNFN )(ϕn+1 +ϕn)/2

− α(cosϕn+1 − cosϕn)/(ϕn+1 −ϕn). (37)

Initial conditions and numerical data for both discretizations:
Spatial domain, number N of spatial intervals, and time-step size ∆t used were 7

x ∈ [−20, 20], N = 200, ∆t = 0.01, parameter: α = 1.

5For numerical computations, care must be taken to avoid problems when the difference ϕn+1−ϕn in
the denominator of (32) becomes small. We used the sum-to-product identity cos a− cos b = −2 sin((a+
b)/2) sin((a− b)/2) to give a more numerically amenable expression.

6In practice, one uses the fast Fourier transform algorithm to calculate the DFTs in O(N logN)
operations.

7Here and below, if x ∈ [a, b], then ∆x = b−a
N

, and xj = a + j∆x, j = 0, 1, . . . , N .
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Figure 1: Sine-Gordon equation with finite differences semi-discretization: Energy error
(left) and global error (right) vs time, for AVF and implicit midpoint integrators.

Initial conditions:

ϕ(x, 0) = 0,

π(x, 0) =
8

cosh(2x)
.


Right-moving
kink and left-
moving anti-kink
solution.

(38)

Numerical comparisons of the AVF method with the well known (symplectic) implicit
midpoint integrator8 are given in figure 1 for the finite differences discretization.

Example 5.2. Korteweg-de Vries equation:

Continuous:

∂u

∂t
= −6u

∂u

∂x
− ∂3u

∂x3
, (39)

H =

∫ [
1

2
(ux)2 − u3

]
dx, (40)

S =
∂

∂x
. (41)

Boundary conditions: periodic, u(−20, t) = u(20, t).
Semi-discrete:

H =
∑
j

[
1

2(∆x)2
(uj+1 − uj)2 − u3

j

]
, (42)

S =
1

2∆x


0 −1 1
1 0 −1

. . .
. . .

. . .

1 0 −1
−1 1 0

 . (43)

8Recall that the implicit midpoint integrator is given by
un+1−un

∆t
= f

(
un+un+1

2

)
.
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Figure 2: Korteweg-de Vries equation: Energy error (left) and global error (right) vs
time, for AVF and implicit midpoint integrators.

Initial conditions and numerical data:

x ∈ [−20, 20], N = 400, ∆t = 0.001.

6 Dissipative PDEs

Example 6.1. Heat equation:

Continuous:
The heat equation

∂u

∂t
= uxx, (44)

is a dissipative PDE and can be written in the form (6), i.e.

∂u

∂t
= N1

δH1

δu
,

∂u

∂t
= N2

δH2

δu
, (45)

with the Lyapunov functions H1(u) =
∫ 1

0
1
2u

2
x dx and H2(u) =

∫ 1
0

1
2u

2 dx and the opera-
tors N1 = −1 and N2 = ∂2

x, respectively.
Boundary conditions: u(0, t) = u(1, t) = 0.
Semi-discrete:

H1 =
1

2(∆x)2

u2
1 +

N−1∑
j=2

(uj − uj−1)2 + u2
N−1

 (46)

and

H2 =
N−1∑
j=1

1

2
(uj)

2, (47)
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Figure 3: Heat equation: plots of Lyapunov functions H1∆x (left) and H2∆x (right) vs
time, AVF integrator.

as well as

N 2 =
1

(∆x)2


−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

 (48)

and the obvious discretisation of N1. With these choices, both discretisations yield
identical semi-discrete equations of motion and therefore H1 and H2 are simultaneously
Lyapunov functions of the semi-discrete system and therefore, the AVF integrator pre-
serves both Lyapunov functions.

Initial conditions and numerical data:

x ∈ [0, 1], N = 50, ∆t = 0.0025. (49)

Initial condition: u(x, 0) = x(1− x).
This system is numerically illustrated in Figure 3, where the monotonic decrease of

the Lyapunov functions for the heat equation in (46) and (47) is shown.
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7 Conservation laws in partial differential equations

7.1 Conservation laws for partial differential equations

Given a PDE with solution u = u(x, t), x ∈ Ω ⊂ R, t ∈ [0, T ], belonging to suitable
function-space X, we say that we have a conservation law for the PDE if there exist two
functions E : R→ R and F : R→ R such that

∂E(u(x, t))

∂t
+
∂F (u(x, t))

∂x
= 0. (50)

The function E is called local density and F is called local flux of the conserved quantity.
Integrating the conservation law on the space domain we obtain

∂

∂t

∫
Ω
E(u(x, t)) dx+ F (u(x, t))|Γ = 0,

where Γ is the boundary of Ω.

Example 7.1. Consider the inviscid Burgers equation

ut +
∂

∂x
(
1

2
u2) = 0, x ∈ [0, 1], t ≥ 0,

with homogeneous Dirichlet boundary conditions. By taking E(u(x, t)) = u(x, t) and
F (u(x, t)) = 1

2u
2(x, t) we can write the equation in the form (50). The conserved quantity

is
∂

∂t

∫ 1

0
u(x, t) dx = −1

2
u2

∣∣∣∣1
0

= 0.

8 Discrete gradient methods have an energy conservation
law

This topic is discussed in [14].
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