SECOND-ORDER EQUATIONS WITH CONSTANT COEFFICIENTS AND THE METHOD OF UNDETERMINED COEFFICIENTS

Given a second-order linear differential equation with constant coefficients

$$
\text { (*) } y^{\prime \prime}+a y^{\prime}+b y=r(x)
$$

with corresponding homogeneous equation

$$
(* *) y^{\prime \prime}+a y^{\prime}+b y=0 .
$$

The characteristic equation is

$$
\text { (1) } \lambda^{2}+a \lambda+b=0 \text {. }
$$

The homogeneous equation (**) is solved by solving (1):

1) If (1) has two simple real roots (i.e. distinct real roots) λ_{1} og λ_{2}, a general solution of $(* *)$ is given by $y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x}$.
2) If (1) has a double root $\lambda_{1}=\lambda_{2}=\lambda$, a general solution of ($* *$) is given by $y=c_{1} e^{\lambda x}+c_{2} x e^{\lambda x}$.
3) If $\lambda_{1,2}=\alpha \pm i \beta(\beta \neq 0)$ are complex roots of (1), a general solution of $(* *)$ is given by $y=c_{1} e^{\alpha x} \cos \beta x+c_{2} e^{\alpha x} \sin \beta x$.

Below, you will find a table giving the form of a particular solution y_{p} of the nonhomogeneous equation $(*)$ for certain $r(x)$. Here $P_{n}(x)$ denotes a polynomial of degree $n \geq 0, P_{n}(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ where $a_{n} \neq 0$. Note too that c and α are 0 when there are no exponential functions in $r(x)$.

$r(x)$	y_{p}
a) $P_{n}(x) e^{c x}$	$x^{m}\left(A_{0}+A_{1} x+\cdots+A_{n} x^{n}\right) e^{c x}$ where $m=\left\{\begin{array}{l} 0 \text { if } c \text { is not a root of }(1) \\ 1 \text { if } c \text { is a simple root of (1) } \\ 2 \text { if } c \text { is a double root of }(1) . \end{array}\right.$
b) $\begin{gathered} P_{n}(x) e^{\alpha x} \cos \beta x \\ \text { or } \\ P_{n}(x) e^{\alpha x} \sin \beta x \end{gathered}$	$\begin{aligned} & x^{m}\left[\left(A_{0}+A_{1} x+\cdots+A_{n} x^{n}\right) e^{\alpha x} \cos \beta x+\right. \\ & \left.\left(B_{0}+B_{1} x+\cdots+B_{n} x^{n}\right) e^{\alpha x} \sin \beta x\right] \end{aligned}$ where $m=\left\{\begin{array}{l} 0 \text { if } \alpha \pm i \beta \text { is not a root of (1) } \\ 1 \text { if } \alpha \pm i \beta \text { is a root of (1). } \end{array}\right.$
If $r(x)$ is a sum of terms as in a) og b), the choice of y_{p} is a sum of the correspending terms.	

