SECOND-ORDER EQUATIONS WITH CONSTANT COEFFICIENTS AND THE METHOD OF UNDETERMINED COEFFICIENTS

Given a second-order linear differential equation with constant coefficients

(*)
$$y'' + ay' + by = r(x)$$

with corresponding homogeneous equation

(**)
$$y'' + ay' + by = 0.$$

The characteristic equation is

(1) $\lambda^2 + a\lambda + b = 0.$

The **homogeneous** equation (**) is solved by solving (1):

- 1) If (1) has two **simple** real roots (i.e. distinct real roots) λ_1 og λ_2 , a general solution of (**) is given by $y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$.
- 2) If (1) has a **double root** $\lambda_1 = \lambda_2 = \lambda$, a general solution of (**) is given by $y = c_1 e^{\lambda x} + c_2 x e^{\lambda x}$.
- 3) If $\lambda_{1,2} = \alpha \pm i\beta \ (\beta \neq 0)$ are **complex** roots of (1), a general solution of (**) is given by $y = c_1 e^{\alpha x} \cos \beta x + c_2 e^{\alpha x} \sin \beta x$.

Below, you will find a table giving the form of a **particular solution** y_p of the **nonhomogeneous** equation (*) for **certain** r(x). Here $P_n(x)$ denotes a polynomial of degree $n \ge 0$, $P_n(x) = a_0 + a_1x + \cdots + a_nx^n$ where $a_n \ne 0$. Note too that c and α are 0 when there are no exponential functions in r(x).

r(x)	y_p
a)	
$P_n(x)e^{cx}$	$x^m (A_0 + A_1 x + \dots + A_n x^n) e^{cx}$
	where
	$\int 0 \text{ if } c \text{ is not } a \text{ root of } (1)$
	$m = \begin{cases} 1 \text{ if } c \text{ is a simple root of } (1) \end{cases}$
	2 if c is a double root of (1).
b)	
$P_n(x)e^{\alpha x}\cos\beta x$	$x^{m}[(A_{0} + A_{1}x + \dots + A_{n}x^{n})e^{\alpha x}\cos\beta x +$
or	$(B_0 + B_1 x + \dots + B_n x^n) e^{\alpha x} \sin \beta x]$
$P_n(x)e^{\alpha x}\sin\beta x$	where
	$\int 0 \text{ if } \alpha \pm i\beta \text{ is not a root of (1)}$
	$m = \begin{cases} 1 \text{ if } \alpha \pm i\beta \text{ is a root of } (1). \end{cases}$
If $r(x)$ is a sum of terms as in a) og b), the choice of y_p is a sum of the	
corresponding terms.	