

TMA4110 Calculus 3 Autumn 2010

Exercise set 10 - Week 44

Edwards & Penney, section 4.4

7,17,19,23,30

Edwards & Penney, section 5.1

3,19,23,30

Exam problems

Dec. 03, problem 5 Given the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1\\3\\-2 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \ \mathbf{v}_4 = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \ \mathbf{v}_5 = \begin{bmatrix} 3\\1\\2 \end{bmatrix} \quad \text{og} \quad \mathbf{b} = \begin{bmatrix} -1\\3\\2 \end{bmatrix}.$$

a) Find a basis for the subspace $V \subseteq \mathbb{R}^3$ spanned by the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_5$, and also a basis for the subspace V^{\perp} (the orthogonal complement of V in \mathbb{R}^3).

b) Find the orthogonal projection of **b** into the subspace V.

c) Let $V \subseteq \mathbb{R}^n$, and assume we're given vectors $\mathbf{v} \in V$ and $\mathbf{w} \in V^{\perp}$. Show that if neither \mathbf{v} nor \mathbf{w} is the zero vector, then \mathbf{v} and \mathbf{w} are linearly independent.

May 01, problem 4 Given the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 1 & 5 & -9 & -4 \\ 2 & 5 & 2 & 7 \end{bmatrix}.$$

a) Find Null(A). What is the solution set of

$$A\mathbf{x} = \begin{bmatrix} 1\\1\\2 \end{bmatrix}?$$

b) Find a basis for $\operatorname{Col}(A)$, $\operatorname{Row}(A)$ and $\operatorname{Row}(A)^{\perp}$).

Multiple-choice questions

1 For which value(s) of k are the vectors $\mathbf{u} = (2, 2, -1, k)$ and $\mathbf{v} = (k, 1, 1, k)$ mutually orthogonal?

A: k = 1 **B:** $k = \pm 1$ **C:** k = -1 **D:** no k