Norwegian University of Science and Technology
Departement of Mathematical Sciences

Edwards \& Penney, section 4.4

$\mathbf{7 , 1 7 , 1 9 , 2 3 , 3 0}$

Edwards \& Penney, section 5.1

$3,19,23,30$

Exam problems

Dec. 03, problem 5 Given the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
3 \\
-2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right], \quad \mathbf{v}_{5}=\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right] \quad \text { og } \quad \mathbf{b}=\left[\begin{array}{r}
-1 \\
3 \\
2
\end{array}\right]
$$

a) Find a basis for the subspace $V \subseteq \mathbb{R}^{3}$ spanned by the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{5}$, and also a basis for the subspace V^{\perp} (the orthogonal complement of V in \mathbb{R}^{3}).
b) Find the orthogonal projection of \mathbf{b} into the subspace V.
c) Let $V \subseteq \mathbb{R}^{n}$, and assume we're given vectors $\mathbf{v} \in V$ and $\mathbf{w} \in V^{\perp}$. Show that if neither \mathbf{v} nor \mathbf{w} is the zero vector, then \mathbf{v} and \mathbf{w} are linearly independent.

May 01, problem 4 Given the matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & 3 & 5 \\
1 & 5 & -9 & -4 \\
2 & 5 & 2 & 7
\end{array}\right]
$$

a) Find $\operatorname{Null}(A)$. What is the solution set of

$$
A \mathbf{x}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] ?
$$

b) Find a basis for $\operatorname{Col}(A), \operatorname{Row}(A)$ and $\left.\operatorname{Row}(A)^{\perp}\right)$.

Multiple-choice questions

1 For which value(s) of k are the vectors $\mathbf{u}=(2,2,-1, k)$ and $\mathbf{v}=(k, 1,1, k)$ mutually orthogonal?
A: $k=1$
B: $k= \pm 1$
$\mathbf{C}: k=-1$
D: no k

