Norwegian University of Science and Technology
Departement of Mathematical Sciences

Edwards \& Penney, section 2.4

5,15,23

Edwards \& Penney, section 4.1

3,8,19,30

Exam problems

(SIF5009 december 2000)
7 Let A be an $n \times n$-matrix and let \mathbf{x} be an n-vector such that $A^{3} \mathbf{x}=\mathbf{0}$, while $A^{2} \mathbf{x} \neq \mathbf{0}$. Show that the vectors $\mathbf{x}, A \mathbf{x}$ and $A^{2} \mathbf{x}$ are linearly independent.
(SIF5010 august 2003)

4

Given the matrix $A=\left[\begin{array}{cccc}1 & 0 & 0 & -\alpha \\ 0 & 0 & \alpha & 1 \\ 0 & \alpha & 1 & \alpha \\ \alpha & 1 & \alpha & 0\end{array}\right]$ and the vector $\mathbf{b}=\left[\begin{array}{c}\alpha \\ 0 \\ \alpha \\ 1+\alpha\end{array}\right] \quad$ where $\alpha \in \mathbb{R}$.
a) Compute $\operatorname{det}(A)$ and decide for which values of α the matrix A is invertible.
b) For which values of α does the system of equations $A \mathbf{x}=\mathbf{b}$ have exactly one solution, infinitely many solutions or no solution, respectively?

Multiple-choice questions

1 Suppose that A is a 5×7-matrix. What can you say about the number of free variables, k, for the system $A \mathbf{x}=\mathbf{0}$?
A: $k \leq 2$
B: $k=2$
C: $2 \leq k \leq 7$
D: $k \leq 7$

2 Compute the rank r for the 3×4-matrix

$$
A=\left[\begin{array}{llll}
1 & 1 & 2 & 1 \\
1 & 0 & 1 & 2 \\
2 & 1 & 3 & 1
\end{array}\right]
$$

A: $r=1$
B: $r=2$
$\mathbf{C}: r=3$
D: $r=4$

