

TMA4110 Calculus 3 Autumn 2010

Exercise set 8 – Week 40

Edwards & Penney, section 2.4

 $5,\!15,\!23$

Edwards & Penney, section 4.1

 $3,\!8,\!19,\!30$

Exam problems

(SIF5009 december 2000)

<u>7</u> Let A be an $n \times n$ -matrix and let **x** be an *n*-vector such that $A^3 \mathbf{x} = \mathbf{0}$, while $A^2 \mathbf{x} \neq \mathbf{0}$. Show that the vectors **x**, $A\mathbf{x}$ and $A^2\mathbf{x}$ are linearly independent.

(SIF5010 august 2003)

4

Given the matrix
$$A = \begin{bmatrix} 1 & 0 & 0 & -\alpha \\ 0 & 0 & \alpha & 1 \\ 0 & \alpha & 1 & \alpha \\ \alpha & 1 & \alpha & 0 \end{bmatrix}$$
 and the vector $\mathbf{b} = \begin{bmatrix} \alpha \\ 0 \\ \alpha \\ 1 + \alpha \end{bmatrix}$ where $\alpha \in \mathbb{R}$.

a) Compute det(A) and decide for which values of α the matrix A is invertible.

b) For which values of α does the system of equations $A\mathbf{x} = \mathbf{b}$ have exactly one solution, infinitely many solutions or no solution, respectively?

Multiple-choice questions

1 Suppose that A is a 5 × 7-matrix. What can you say about the number of free variables, k, for the system $A\mathbf{x} = \mathbf{0}$?

A: $k \le 2$ **B:** k = 2 **C:** $2 \le k \le 7$ **D:** $k \le 7$

2 Compute the rank r for the 3×4 -matrix

$$A = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 3 & 1 \end{bmatrix}.$$

A: $r = 1$ B: $r = 2$ C: $r = 3$ D: $r = 4$