Exam in TMA4195 Mathematical Modeling 11.12.2014 Solutions

Problem 1

The dimensional matrix A is

	L	u_{0}	A	m	α	g	ρ
m	1	1	2	0	0	1	-3
s	0	-1	0	0	0	-2	0
kg	0	0	0	1	0	0	1

It can easily be checked that A has rank 3, and so by Buckingham's Pi Theorem, there are exactly $7-3=4$ dimensionally independent combinations. Since we want L as a function of the other variables, we exclude it as a core variable; for simplicity, we choose the core variables as u_{0}, A and m. The dimensionless combinations are thus as follows:

$$
\pi_{1}=\frac{L}{\sqrt{A}}, \quad \pi_{2}=\alpha, \quad \pi_{3}=\frac{g \sqrt{A}}{u_{0}^{2}} \quad \text { and } \quad \pi_{4}=\frac{\rho A^{\frac{3}{2}}}{m}
$$

Furthermore, Buckingham's Pi Theorem states that any physical relation

$$
G\left(L, u_{0}, A, m, \alpha, g, \rho\right)=0
$$

is equivalent to a relation between the associated dimensionless combinations:

$$
\Psi\left(\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}\right)=0
$$

Assuming that this equation allows us to solve with respect to π_{1}, we find

$$
\begin{aligned}
\pi_{1} & =\Phi\left(\pi_{2}, \pi_{3}, \pi_{4}\right) \\
\Rightarrow L & =\sqrt{A} \Phi\left(\alpha, \frac{g \sqrt{A}}{u_{0}^{2}}, \frac{\rho A^{\frac{3}{2}}}{m}\right) .
\end{aligned}
$$

In other words, we know that there exists a function Φ such that

$$
F\left(u_{0}, A, m, \alpha, g, \rho\right)=\sqrt{A} \Phi\left(\alpha, \frac{g \sqrt{A}}{u_{0}^{2}}, \frac{\rho A^{\frac{3}{2}}}{m}\right)
$$

Note: Other (equivalent!) relations can be given using other choices of dimensionless combinations.

Problem 2

We start by calculating the outer solution y_{O}. We set $\epsilon=0$ and obtain the equation

$$
y_{O}^{\prime}+y_{O}^{2}=0, \quad y_{O}(1)=-\frac{1}{2},
$$

where we have used the hint that the boundary layer is located near $x=0$, meaning that the outer equation must satisfy the boundary condition at $x=1$. We solve this by assuming $y_{O} \neq 0$ and dividing by y_{O}^{2} to find

$$
\begin{aligned}
\frac{y_{O}^{\prime}}{y_{O}^{2}} & =-1 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(-\frac{1}{y_{O}}\right) & =-1 \\
\Rightarrow \frac{1}{y_{O}} & =x+C \\
\Rightarrow y_{O} & =\frac{1}{x+C} .
\end{aligned}
$$

Imposing the boundary condition, we obtain the outer solution:

$$
y_{O}=\frac{1}{x-3}
$$

To find the inner solution, we must first obtain a consistent scaling in the boundary layer. We scale the x axis by $x=\delta \xi$ and obtain the rescaled equation, with $Y=Y(\xi)$

$$
\frac{\epsilon}{\delta^{2}} Y^{\prime \prime}+\frac{1}{\delta} Y^{\prime}+Y^{2}=0
$$

Assuming $Y, Y^{\prime}, Y^{\prime \prime} \sim 1$ in this area, we use the method of dominant balance to determine the scaling of δ. There are three choices: $\delta=\epsilon, \delta=\sqrt{\epsilon}$ and $\delta=1$. Choosing $\delta=1$ yields the original equation, which is uninteresting. Choosing $\delta=\sqrt{\epsilon}$ causes the second term to become dominant, and is an inconsistent approximation. However, choosing $\delta=\epsilon$, we get the equation

$$
Y^{\prime \prime}+Y^{\prime}+\epsilon Y^{2}=0
$$

which is consistent and allows us to disregard the Y^{2} term. We thereby get the inner equation

$$
Y_{I}^{\prime \prime}+Y_{I}^{\prime}=0, \quad Y_{I}(0)=0
$$

with general solution

$$
Y_{I}(\xi)=A+B \mathrm{e}^{-\xi}
$$

and, with the boundary condition imposed,

$$
Y_{I}(\xi)=A\left(1-\mathrm{e}^{-\xi}\right)
$$

Next, using the matching condition, we get

$$
A=\lim _{\xi \rightarrow \infty} Y_{I}(\xi)=\lim _{x \rightarrow 0} y_{O}(x)=-\frac{1}{3}
$$

Finally, combining the inner and outer solution and subtracting the matching constant, we get the uniform solution

$$
\begin{aligned}
y_{U}(x) & =y_{O}(x)+Y_{I}\left(\frac{x}{\epsilon}\right)-\lim _{\xi \rightarrow \infty} Y_{I}(\xi) \\
\Rightarrow y_{U}(x) & =\frac{1}{x-3}+\frac{1}{3} \mathrm{e}^{-\frac{x}{\epsilon}} .
\end{aligned}
$$

Problem 3

We find the equilibrium points as the solutions of

$$
f(y)=y^{\prime}=y(y-\sqrt{\mu-1})(y+\sqrt{\mu-1})(y-\mu)=0
$$

i.e. the equilibrium points are $y \in\{0, \sqrt{\mu-1},-\sqrt{\mu-1}, \mu\}$. Note that the equilibrium points $y=\sqrt{\mu-1}$ and $y=-\sqrt{\mu-1}$ are real only for $\mu \geq 1$.

To investigate their stability property with respect to μ, we look at the sign of $f^{\prime}(y)$ at each equilibrium point as μ changes. A negative sign implies stability, while a positive sign implies instability. Firstly, we have that

$$
\begin{aligned}
& f^{\prime}(y)=(y-\sqrt{\mu-1})(y+\sqrt{\mu-1})(y-\mu)+y(y+\sqrt{\mu-1})(y-\mu) \\
& \quad \ldots+y(y-\sqrt{\mu-1})(y-\mu)+y(y-\sqrt{\mu-1})(y+\sqrt{\mu-1}) .
\end{aligned}
$$

We now observe that

$$
\begin{gathered}
f^{\prime}(0)=(\mu-1) \mu \begin{cases}>0, & \mu>1 \\
<0, & 0<\mu<1 \\
>0, & \mu<0\end{cases} \\
f^{\prime}(\mu)=\mu\left(\mu^{2}-\mu+1\right) \quad \begin{cases}>0, & \mu>0 \\
<0, & \mu<0\end{cases} \\
f^{\prime}(\pm \sqrt{\mu-1})=2 \sqrt{\mu-1}(\sqrt{\mu-1}-\mu)<0, \quad \mu>1
\end{gathered}
$$

From this, we get the bifurcation diagram shown in figure 1 . The bifurcation points are $(0,0)$ and $(0,1)$, and we can see that the equilibrium solutions change stability when passing through these points.

Figure 1: Bifurcation diagram.

Problem 4

We rewrite the equation in standard form:

$$
\rho_{t}+\rho^{2} \rho_{x}=0, \quad x \in \mathbb{R}, \quad t>0
$$

and solve it by the method of characteristics. Introducing $z(t)=\rho(x(t), t)$, we see that

$$
\dot{z}=\rho_{t}+\dot{x} \rho_{x},
$$

and choosing $\dot{x}=z^{2}$ yields the system of ODES:

$$
\begin{array}{ll}
\dot{x}=z^{2}, & x(0)=x_{0} \\
\dot{z}=0, & z(0)=\rho(x(0), 0)=\rho\left(x_{0}, 0\right),
\end{array}
$$

with solutions:

$$
\begin{aligned}
& x(t)=\rho\left(x_{0}, 0\right)^{2} t+x_{0} \\
& z(t)=\rho\left(x_{0}, 0\right) .
\end{aligned}
$$

Using the initial conditions, we get two families of characteristics:

$$
x(t)=\left\{\begin{array}{l}
4 t+x_{0}, \quad x_{0}<0 \\
t+x_{0}, \quad x_{0}>0
\end{array}\right.
$$

Since the cinematic velocity $c(\rho)=\rho^{2}$ is greater for characteristics starting at $x_{0}<0$ than for those starting at $x_{0}>0$, the solution will develop a shock, starting at $x=0$ at $t=0$. The speed of this shock is determined by the Rankine-Hugoniot condition:

$$
\begin{aligned}
\dot{S}(t) & =\frac{j\left(\rho^{+}\right)-j\left(\rho^{-}\right)}{\rho^{+}-\rho^{-}}=\frac{\frac{1}{3}\left(\rho^{+}\right)^{3}-\frac{1}{3}\left(\rho^{-}\right)^{3}}{\rho^{+}-\rho^{-}}=\frac{\frac{1}{3} 2^{3}-\frac{1}{3} 1^{3}}{2-1}=\frac{7}{3} \\
\Rightarrow S(t) & =\frac{7}{3} t
\end{aligned}
$$

The characteristics and the shock are shown in figure 2.

Figure 2: Characteristics and shock.
We may summarize the solution as:

$$
\rho(x, t)= \begin{cases}2, & x<\frac{7}{3} t \\ 1, & x>\frac{7}{3} t\end{cases}
$$

Problem 5

Interpretation of reactions:

- When an infected and a susceptible person interacts, there is a chance of the susceptible person getting infected.
- Infected people have a chance of recovering.
- Infected people have a chance of dying.

Consumption, production and reaction rates:

- In the first reaction, one S is consumed and one I is produced. Reaction rate: $r_{a}=a S I$.
- In the second reaction, one I is consumed and one R is produced. Reaction rate: $r_{b}=b I$.
- In the third reaction, one I is consumed and one D is produced. Reaction rate: $r_{c}=c I$.

Disregarding births and deaths due to other circumstances, the total amount of people ($S+$ $I+R+D)$ must be constant. We can then set up the system of ODEs governing the evolution of the populations:

$$
\begin{aligned}
& \dot{S}=-r_{a}=-a S I \\
& \dot{I}=r_{a}-r_{b}-r_{c}=a S I-b I-d I \\
& \dot{R}=r_{b}=b I \\
& \dot{D}=r_{c}=d I
\end{aligned}
$$

Problem 6

a) The total mass of water in R is equal to the density times the available volume:

$$
\begin{aligned}
\text { total mass } & =\rho \phi \int_{R} \mathrm{~d} x^{*} \mathrm{~d} z^{*} \\
& =\int_{R} \rho \phi \mathrm{~d} x^{*} \mathrm{~d} z^{*}
\end{aligned}
$$

The general conservation law states that

$$
\frac{\text { change of mass in } R}{\text { time }}=- \text { flux out of } R+\text { production in } R,
$$

or:

$$
\frac{\mathrm{d}}{\mathrm{~d} t^{*}} \int_{R} \rho \phi \mathrm{~d} x^{*} \mathrm{~d} z^{*}=-\int_{\partial R} \mathbf{j} \cdot \mathbf{n} \mathrm{~d} \sigma+\int_{R} q\left(x^{*}, t^{*}\right) \mathrm{d} x^{*} \mathrm{~d} z^{*} .
$$

We may now note that there is no production in the domain, i.e. $q\left(x^{*}, t^{*}\right) \equiv 0$, and use Darcy's law to express \mathbf{j}, yielding

$$
\frac{\mathrm{d}}{\mathrm{~d} t^{*}} \int_{R} \rho \phi \mathrm{~d} x^{*} \mathrm{~d} z^{*}=\int_{\partial R} \frac{K}{\mu} \nabla\left(p^{*}+\rho g z^{*}\right) \cdot \mathbf{n} \mathrm{d} \sigma .
$$

Since ϕ, ρ and R are constant, we see that

$$
\frac{\mathrm{d}}{\mathrm{~d} t^{*}} \int_{R} \rho \phi \mathrm{~d} x^{*} \mathrm{~d} z^{*}=0
$$

Furthermore, we can apply the divergence theorem,

$$
\int_{\partial R} \mathbf{j} \cdot \mathbf{n} \mathrm{~d} \sigma=\int_{R} \nabla \cdot \mathbf{j} \mathrm{~d} x^{*} \mathrm{~d} z^{*}
$$

to obtain the equation

$$
\begin{equation*}
0=\frac{K}{\mu} \int_{R} \nabla \cdot \nabla\left(p^{*}+\rho g z^{*}\right) \mathrm{d} x^{*} \mathrm{~d} z^{*}=\frac{K}{\mu} \int_{R} \nabla^{2} p^{*} \mathrm{~d} x^{*} \mathrm{~d} z^{*} \tag{1}
\end{equation*}
$$

We now fix an arbitrary point $\left(x_{0}, z_{0}\right) \in \Omega^{*}\left(t^{*}\right)$ and choose

$$
R=R_{r}=\left\{\left(x^{*}, z^{*}\right):\left|x^{*}-x_{0}\right|<\frac{r}{2},\left|z^{*}-z_{0}\right|<\frac{r}{2}\right\}
$$

and note that in R_{r}, since $\nabla^{2} p^{*}$ is continuous, we have

$$
\nabla^{2} p^{*}\left(x^{*}, z^{*}\right)=\nabla^{2} p^{*}\left(x_{0}, z_{0}\right)+o(1) \text { as } r \rightarrow 0
$$

Hence, inserting this into equation (1), we get

$$
0=\frac{1}{\int_{R} \mathrm{~d} x^{*} \mathrm{~d} z^{*}}\left[\nabla^{2} p^{*}\left(x_{0}, z_{0}\right)+o(1)\right] \int_{R} \mathrm{~d} x^{*} \mathrm{~d} z^{*}=\nabla^{2} p^{*}\left(x_{0}, z_{0}\right)+o(1),
$$

and finally, letting $r \rightarrow 0$ and emphasizing that $\left(x_{0}, z_{0}\right)$ was chosen arbitrarily, we get

$$
\nabla^{2} p^{*}=\frac{\partial^{2} p^{*}}{\partial x^{* 2}}+\frac{\partial^{2} p^{*}}{\partial z^{* 2}}=0 \quad \text { in } \quad \Omega^{*}\left(t^{*}\right)
$$

Note: Another way of arriving at the same conclusion is to observe that since the control volume R was chosen arbitrarily, and since p^{*} is assumed smooth, equation (1) can only hold if the integrand is zero everywhere in $\Omega^{*}\left(t^{*}\right)$
b) Natural scalings for x^{*}, z^{*} and h^{*} are L, H and H, respectively. Inserting the scaled variables $x^{*}=L x, z^{*}=H z, h^{*}=H h, p^{*}=\rho g H p$, and $t^{*}=T t$ into the equation, we get

$$
\begin{aligned}
& \frac{\mu \phi H}{K T} h_{t}-\frac{\rho g H^{2}}{L^{2}} h_{x} p_{x}=-\rho g p_{z}-\rho g \\
\Rightarrow & \frac{\mu \phi H}{\rho g K T} h_{t}-\frac{H^{2}}{L^{2}} h_{x} p_{x}=-\left(p_{z}+1\right)
\end{aligned}
$$

Since $h, p \in(0,1)$, the right hand side is ~ 1, and the second term on the left hand side is negligible. We therefore wish to choose T such that

$$
\frac{\mu \phi H}{\rho g K T}=1 \quad \Rightarrow \quad T=\frac{\mu \phi H}{\rho g K}
$$

c) We follow the hint and reduce the problem to one space dimension by introducing the new variables:

$$
\begin{aligned}
& \varphi\left(x^{*}, t^{*}\right)=\rho \phi h^{*}\left(x^{*}, t^{*}\right)=\frac{\text { mass of water at }(\mathrm{x}, \mathrm{t})}{\text { length }} \\
& Q\left(x^{*}, t^{*}\right)=\int_{0}^{h^{*}\left(x^{*}, t^{*}\right)} \mathbf{j}\left(x^{*}, t^{*}, z\right) \cdot \mathbf{e}_{x} \mathrm{~d} z=\frac{\text { volume flow rate through } x^{*} \text { at time } t^{*}}{\text { time }}
\end{aligned}
$$

Using Darcy's law and the assumption of hydrostatic pressure, we have

$$
\begin{aligned}
& \mathbf{j}\left(x^{*}, t^{*}, z\right) \cdot \mathbf{e}_{x}=-\frac{K}{\mu} p_{x^{*}}^{*}\left(x^{*}, t^{*}, z\right)=-\frac{K}{\mu} h_{x^{*}}^{*}\left(x^{*}, t^{*}\right) \\
\Rightarrow & Q\left(x^{*}, t^{*}\right)=-\left(h^{*} h_{x^{*}}^{*}\right)\left(x^{*}, t^{*}\right)
\end{aligned}
$$

We now let $x^{*} \in(0, L)$ and $t^{*}>0$ and set up the conservation law for water in the interval $\left(x^{*}, x^{*}+\Delta x^{*}\right)$:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t^{*}} \int_{x^{*}}^{x^{*}+\Delta x^{*}} \varphi\left(x, t^{*}\right) \mathrm{d} x=Q\left(x^{*}, t\right)-Q\left(x^{*}+\Delta x^{*}, t\right) \tag{2}
\end{equation*}
$$

Now, since φ is smooth, we have that:

$$
\frac{\mathrm{d}}{\mathrm{~d} t^{*}} \int_{x^{*}}^{x^{*}+\Delta x^{*}} \varphi\left(x, t^{*}\right) \mathrm{d} x=\int_{x^{*}}^{x^{*}+\Delta x^{*}} \varphi_{t^{*}}\left(x, t^{*}\right) \mathrm{d} x=\Delta x^{*}\left(\varphi_{t^{*}}\left(x^{*}, t^{*}\right)+o(1)\right)
$$

as $\Delta x^{*} \rightarrow 0$. Inserting this into (2), dividing by Δx^{*} and letting $\Delta x^{*} \rightarrow 0$, we get

$$
\begin{aligned}
\varphi_{t^{*}} & =-Q_{x^{*}}\left(x^{*}, t^{*}\right) \\
\Rightarrow \quad h_{t^{*}}^{*} & =\frac{K}{\rho g \mu} \frac{\partial}{\partial x^{*}}\left(h^{*} h_{x^{*}}^{*}\right) \quad x^{*} \in(0, L), \quad t^{*}>0
\end{aligned}
$$

