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Abstract

The gamma distribution and the concept of sufficiency are important in statis-
tical inference. Key elements of this are demonstrated by solving the problems for-
mulated in this note. This requires some knowledge of probability theory, statistics,
and multivariate calculus. Casella and Berger (2002) give many more illustrations
and explanations of the theory behind the methods of statistical inference. 1
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1 Probability

It is, as always, assumed that Ω is a fixed abstract underlying probability space with
probability measure P and family of events E (a sigma algebra).

1.1 Random variables

A function X : Ω→ R is a random variable if (X ≤ x) = {ω |X(ω) ≤ x} is an event
for all real x. Let X and Y be random variables and let t be a constant. Use this and
the defining properties of events to prove that t, X + Y , XY , and exp(tX) are random
variables. Why and how is the cumulative distribution function of a random variable
always well defined? Prove that the set of random variables is a vector space.

1.2 Random quantities

Let X : Ω→X be a function. Prove that the family of sets E such that (X ∈ E) =
{ω |X(ω) ∈ E} is an event is a σ-algebra (sigma algebra). Prove that PX(E) = P(X ∈ E)
defines a probability measure (probability function) PX . A function X : Ω→ ΩX is
by definition measurable if (X ∈ A) is an event whenever A is an event. Prove that
PX(A) = P(X ∈ A) defines a probability measure (probability function) PX . What is
the difference between the two given definitions of the law PX of X?

1.3 Borel field

In the exercises you proved that the intersection of two σ-algebras is a σ-algebra. Prove
that the intersection of an arbitrary collection of σ-algebras is a σ-algebra. The Borel
field of the real line is the intersection of the collection of σ-algebras that contain the
open intervals. A set is a Borel set if it belongs to the Borel field. Prove that PX(B) is
well defined if B is a Borel set and X is a random variable.

2 The Gamma Distribution

The notationX ∼ Gamma(α, β) means thatX > 0 is a gamma distributed random vari-
able with shape α > 0 and scale β > 0. The density ofX ∼ Gamma(α) = Gamma(α, 1)
is proportional to xα−1e−x.

2.1 Moment Generating Function

Find the density of X ∼ Gamma(α, β) = βGamma(α). The moment generating
function M of X is defined by M(t) = EetX . Find the moment generating function of
X ∼ Gamma(α). Find the moment generating function of X ∼ Gamma(α, β). How is
the probability exercise and the change of variables theorem relevant here?
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2.2 Sum

Assume S = X1 + · · · + Xn where Xi ∼ Gamma(αi) are independent. Find the mo-
ment generating function and the probability density of S. Find the moment generating
function and the probability density of S if Xi ∼ Gamma(αi, β).

3 Sufficiency

In the following it will be assumed throughout that the data x1, x2, x3 is a random sample
fromGamma(α, β). Furthermore, s1 = x, s2 = x̃ (geometric mean), and s3 = w = s2/s1.

3.1 Known Shape

Assume the shape α to be known. Prove that T = S1 is a minimal complete sufficient
statistic. Illustrate the level sets [x]t = {x′ | t(x) = t(x′)} in a drawing. Explain that
the level sets give a partion of the data space. Prove that [x]L = [x]t where L is the
likelihood statistic. Explain that this gives a one-one correspondence between L and t.
What does the sufficiency principle say in this case? Find an estimator for the unknown
model parameter which do not violate the sufficiency principle. What is the uncertainty
of the estimate? Find the conditional distribution of the data X given T = t. Use this
to give an alternative proof of sufficiency of T .

3.2 The Bartlett Statistic W

Prove that g(EV ) ≤ Eg(V ) holds when g is convex (Jensen’s inequality). Use this to
prove that 0 < w ≤ 1. Use the Basu theorem to prove that X and W are idependent.

3.3 Known Scale

Assume the scale β is known. Find a minimal complete sufficient T , and redo the exercise
in subsection 3.1 for this case.

3.4 Unknown Shape and Scale

Assume both shape α and scale β to be unknown. Find a minimal complete sufficient T ,
and redo the exercise in subsection 3.1 for this case.
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