Brief solutions to Assignment 6

Chapter 11

Exercise 1:

a) We have that

$$
\mathbf{v}^{T} A \mathbf{v}=\mathbf{v}^{T} \lambda \mathbf{v}=\lambda\langle\mathbf{v}, \mathbf{v}\rangle_{e} .
$$

where $\langle-,-\rangle_{e}$ denote the standard inner product. This is positive since $\lambda>0$
b) Since A is symmetric \mathbb{R}^{n} admits a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of orthogonal eigenvectors of A. It follows that we can write

$$
\mathbf{u}=a_{1} \mathbf{v}_{1}+\ldots+a_{n} \mathbf{v}_{n}
$$

Where $a_{j} \neq 0$ for some j. Thus, we get

$$
\begin{aligned}
\mathbf{u}^{T} A \mathbf{u} & =\mathbf{u}^{T} A\left(\sum_{i=1}^{n} a_{i} \mathbf{v}_{i}\right) \\
& =\sum_{i=1}^{n} a_{i} \mathbf{u}^{T} A\left(\mathbf{v}_{i}\right) \\
& =\sum_{i=1}^{n} a_{i} \mathbf{u}^{T} \lambda_{i} \mathbf{v}_{i}
\end{aligned}
$$

where λ_{i} is the eigenvalue of \mathbf{v}_{i}. Now, we have that

$$
\begin{aligned}
\mathbf{u}^{T} \lambda_{i} \mathbf{v}_{i} & =\sum_{j=1}^{n} a_{j} \mathbf{v}_{j}^{T} \lambda_{i} \mathbf{v}_{i} \\
& =\sum_{j=1}^{n} a_{j} \lambda_{i} \mathbf{v}_{j}^{T} \mathbf{v}_{i} \\
& =a_{i} \lambda_{i} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\mathbf{u}^{T} A \mathbf{u} & =\sum_{i=1}^{n} a_{i} \mathbf{u}^{T} \lambda_{i} \mathbf{v}_{i} \\
& =\sum_{i=1}^{n} a_{i}^{2} \lambda_{i} .
\end{aligned}
$$

Now since $a_{i} \neq 0$ for some i and $\lambda>0$, we have that $\mathbf{u}^{T} A \mathbf{u}>0$.
c) We have shown positivity above. So, symmetry and linearity remains. For symmetry, we have

$$
\begin{aligned}
\langle\mathbf{u}, \mathbf{w}\rangle & =\mathbf{u}^{T} A \mathbf{w} \\
& =\left(A^{T} \mathbf{u}\right)^{T} \mathbf{w} \\
& =\left(\mathbf{w}^{T}\left(A^{T} \mathbf{u}\right)\right)^{T} \\
& =\mathbf{w}^{T} A^{T} \mathbf{u} \\
& =\mathbf{w}^{T} A \mathbf{u} \\
& =\langle\mathbf{w}, \mathbf{u}\rangle .
\end{aligned}
$$

Thus it suffices to prove linearity in the 2nd variable.

$$
\begin{aligned}
\left\langle\mathbf{u}, \mathbf{w}_{1}+\mathbf{w}_{2}\right\rangle & =\mathbf{u}^{T} A\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right) \\
& =\mathbf{u}^{T} A \mathbf{w}_{1}+\mathbf{u}^{T} A \mathbf{w}_{2} \\
& =\left\langle\mathbf{u}, \mathbf{w}_{1}\right\rangle+\left\langle\mathbf{u}, \mathbf{w}_{2}\right\rangle .
\end{aligned}
$$

Chapter 12

Exercise 2: This amounts to solving the least-squares system $A^{\top} A \boldsymbol{x}=A^{\top} \boldsymbol{b}$, whose general solution is

$$
\boldsymbol{x}=\left[\begin{array}{l}
4 \\
s \\
2 \\
0
\end{array}\right], \quad \text { where } s \in \mathbb{R} \text { is a free parameter. }
$$

Exercise 3: Solve $A^{\top} A \boldsymbol{x}=A^{\top} \boldsymbol{b}$, noting that the systems are written as $[A \mid \boldsymbol{b}]$.

Exercise 4: We seek a polynomial $p(x)=a x^{2}+b x+c$ that best fits the given points. Let $\boldsymbol{x}=(a, b, c)$ be the unknown coefficients. Then the constraints are that

$$
\begin{aligned}
& 0=p(0)=0 a+0 b+c, \\
& 1=p(-1)=a-b+c, \\
& 1=p(1)=a+b+c, \\
& 2=p(2)=4 a+2 b+c
\end{aligned}
$$

or $\boldsymbol{A x}=\boldsymbol{b}$ in matrix form, with

$$
A=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & -1 & 1 \\
1 & 1 & 1 \\
4 & 2 & 1
\end{array}\right] \quad \text { and } \quad \boldsymbol{b}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
2
\end{array}\right]
$$

Now solve $A^{\top} A \boldsymbol{x}=A^{\top} \boldsymbol{b}$ to get $\boldsymbol{x}=(0.5,-0.1,0.3)$, and thus $p(3)=4.5$.

Exercise 5: Stochastic matrix: A square matrix for which all entries should be nonnegative and columns should sum to 1 . This excludes a) and \mathbf{c}). This is because the matrix in a) is not a square matrix and the sum of the entries in the second column of the matrix in \mathbf{c}) is greater than 1 .

The matrix in b) is regularly stochastic since all entries in M^{3} are strictly positive.

The unique stationary state or equilibrium state is the eigenvector $\left[\begin{array}{c}5 / 19 \\ 10 / 19 \\ 4 / 19\end{array}\right]$ associated to the eigenvalue 1 , whose entries sum to 1 .

Exercise 6: The eigenvectors associated with the eigenvalue 1 are on the form

$$
\left[\begin{array}{l}
b \\
a
\end{array}\right] t, \quad t \in \mathbb{R},
$$

so the unique eigenvector whose entries sum to 1 is

$$
\frac{1}{a+b}\left[\begin{array}{l}
b \\
a
\end{array}\right]
$$

Exercise 7: The number answers provide the general solutions. Taking into account the initial conditions one finds that for a) one gets $c_{1}=3, c_{2}=-1$ and $c_{3}=0$, while for b) one gets $c_{1}=\frac{1}{2}, c_{2}=\frac{4}{3}$ and $c_{3}=-\frac{1}{6}$.

b). Eigenvalues are 3 and 4.

c). Eigenvalues are $3+\mathrm{i} 3$ and $3-\mathrm{i} 3$.

d). Eigenvalues are -2 i and 2 i .

Exercise 9: a). Eigenvalues are put on the diagonal of D, for instance in the order:

$$
D=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Put the associated eigenvectors in the same order as columns in matrix P :

$$
P=\left[\begin{array}{rrr}
1 & 0 & 1 \\
-1 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right]
$$

b). Let $\boldsymbol{y}=\left(y_{1}, y_{2}, y_{3}\right)$. Then the general solution is

$$
y(t)=c_{1}\left[\begin{array}{r}
1 \\
-1 \\
-1
\end{array}\right] \mathrm{e}^{-t}+c_{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \mathrm{e}^{-2 t}+c_{3}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

The specific solution satisfying the initial conditons becomes

$$
y(t)=\left[\begin{array}{r}
-2 \\
2 \\
2
\end{array}\right] \mathrm{e}^{-t}-\left[\begin{array}{l}
0 \\
3 \\
3
\end{array}\right] \mathrm{e}^{-2 t}+\left[\begin{array}{l}
3 \\
0 \\
3
\end{array}\right]
$$

c). $\lim _{t \rightarrow \infty} y(t)=\left[\begin{array}{l}3 \\ 0 \\ 3\end{array}\right]$

