TMA4110 Matematikk 3 Brief solutions to Assignment 3

Chapter 7

Exercise 1: Make it clear to your self what you have to prove, and remember that addition and scalar multiplication is done point-wise.

The difference is that one is the zero vector, that is an element of V and the other is the zero scalar. One example is $0 \in \mathbb{R}$ and $(0, 0)^T \in \mathbb{R}^2$.

Exercise 2:

- a) Yes. This is the line y = -x going through origo.
- **b)** No. this set does not contain the zero vector.
- This set is not closed under scalar **c)** No. multiplication with real scalars.

Exercise 3: Make it clear to your self what you have to prove, and remember that addition and scalar multiplication is done point-wise.

Let T_n denote the set of lower triangular $n \times n$ matrices. We have to show 3 things. That the zero vector is in T_n , that if $v, u \in T_n$ then $u + v \in T_n$ and if $a \in \mathbb{C}$ and $u \in T_n$ then $au \in T_n$. The zero vector in M_n is the 0 matrix, this is lower triangular, so $0 \in T_n$. If *u* and *v* are lower triangular, then $(u + v)_{ij} = u_{ij} + v_{ij}$, so it follows that u + v is lower triangular. Closure under scalar multiplication is done similarly.

Exercise 4: Check if Av = 0 and use Gauss elimination to determine the basis for ColA.

The dimension of ColA is the number of pivot elements of the reduced row echelon form of A.

Exercise 5: We solve the question for A

$$A = \begin{bmatrix} 5 & -3 & 2 & 21 & -3 \\ 0 & 1 & -2 & 3 & 1 \\ 1 & 0 & -1 & -7 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 58 & 4 \\ 0 & 1 & 0 & 133 & 11 \\ 0 & 0 & 1 & 65 & 5 \end{bmatrix}$$

So we have that

$$\left\{ \left(\begin{array}{c} 5\\0\\1\end{array}\right), \left(\begin{array}{c} -3\\1\\0\end{array}\right), \left(\begin{array}{c} 2\\-2\\-1\end{array}\right) \right\}$$

is a basis for ColA. We also have that

ſ	(-58		(-4))
	-133		-11	
ł	-65	,	—5	}
	1		0	
l	0	J	1	IJ

is a basis for NullA. Finally, since every row had a pivot element we get that the rows of A form a basis for RowA.

Exercise 6:

- a) We can for instance choose $(1, x, x^2)$. A basis is – per definition – a list of vectors which span out the space and is linearly independent. To span out: Any arbitrary vector $a + bx + cx^2$ is a linear combination $a \cdot 1 + b \cdot x + c \cdot x^2$ av 1, x og x^2 . Linearly independent: Given an equation $a \cdot 1 + b \cdot x + c \cdot x^2 = 0$, we must show that we only have the trivial solution. But a polynomial of degree 2 can maximally have two zeros, hence the equation cannot hold unless a = 0, b = 0og c = 0; i.e., we only have the trivial solution.
- b) In the basis coordinates chosein in a), a polynomial $a_0 + a_1x + a_2x^2$ corresponds to the vector $\begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}$. In particular, $1 + 2x + 3x^3$ is written $\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ he str

c) The standard basis for \mathcal{P}_n is $\{1, x, x^2, \dots, x^n\}$.

Exercise 7:

- a) Since *A* has 4 rows, then $ColA \le 4$.
- b) By rank-nullity we have that

 $5 = \text{Null}A + \dim(\text{Col}A) = 2 + \dim(\text{Col}A)$

which implies that $\dim(ColA) = 3$. It follows that there must be 3 linearly independent columns.

- c) If *A* is non-zero, then there exists some *v* with $Av \neq 0$. It follows that dimCol $A \ge 1$. Now by **Theorem 7.26** we have that dimColA =dimRow*A* so there must be a least one linearly independent.
- d) We have that dim $\text{Row}(A^T) = \dim \text{Col}(A)$, so by rank-nullity we have that dim Col(A) = 2.
- e) No since dim $ColA \le 4$ we have by rank-nullity that $NullA \ge 1$.

Exercise 8:

Chapter 8

Exercise 9:

a) We have to find $a, b \in \mathbb{R}$ such that

$$a\left(\begin{array}{c}1\\2\end{array}\right)+b\left(\begin{array}{c}-1\\3\end{array}\right)=\left(\begin{array}{c}5\\2\end{array}\right)$$

Solving the linear system we get that

1	-1	5]	1	0	$\frac{17}{5}$	
2	—1 3	2	\sim	0	1	$-\frac{8}{5}$	_

so setting $a = \frac{17}{5}$ and $b = -\frac{8}{5}$ we get what we wanted. Now by linearity

$$T\left(\left(\begin{array}{c}5\\2\end{array}\right)\right) = T\left(\frac{17}{5}\left(\begin{array}{c}1\\2\end{array}\right) - \frac{8}{5}\left(\begin{array}{c}-1\\3\end{array}\right)\right)$$
$$= \frac{17}{5}T\left(\left(\begin{array}{c}1\\2\end{array}\right)\right) - \frac{8}{5}T\left(\left(\begin{array}{c}-1\\3\end{array}\right)\right)$$
$$= \frac{17}{5} \cdot \left(\begin{array}{c}5\\2\\-1\end{array}\right) - \frac{8}{5}\left(\begin{array}{c}0\\1\\1\end{array}\right)$$
$$= \left(\begin{array}{c}17\\\frac{26}{5}\\-5\end{array}\right).$$

- b) This is the same procedure as *a*), but with the vectors *e*₁, *e*₂.
- c) *T* cannot be surjective since dim $\mathbb{R}^2 < \dim \mathbb{R}^3$. On the other hand we do have that *T* is injective. To see this note that dim im *T* = 2, since the vectors given in the description of the exercise are linearly independent. Now by rank-nullity

- a) The two are equivalent. It is clear that if *U* is a subspace then $cu + v \in U$ for $u, v \in U$ and $c \in \mathbb{R}$. So we assume that the statement in the exercise holds. Note that if we set u = v and c = -1, then cu + v = -u + u = 0 so $0 \in U$. Furthermore, if we set c = 1 then $u + v \in U$ if $u, v \in U$.
- b) Yes. Since *U* is non-empty then there exists an $x \in U$, so by the above we have that $-x + x \in U$, but -x + x = 0.

this implies dim ker T = 0, so ker $T = \{0\}$, which is equivalent to T being injective.

Exercise 10: For the standard matrix note that the standard matrix of a composite is the product of the matrices. To determine the kernel of $R \circ T$ note that R is injective so ker($R \circ T$) = ker T. Now $3x_1 + 2x_2 = 0$ if and only if $-3/2x_1 = x_2$. So the kernel is exactly the vectors in \mathbb{R}^2 satisfying this relationship.

Exercise 11: We consider the matrix

1	0	2	1	~	1	0	2	1]
1	-2	3	0		0	1	$-\frac{1}{2}$	$\frac{1}{2}$	

to see that the base-change matrix must be

$$\left[\begin{array}{cc} 2 & 1 \\ -\frac{1}{2} & \frac{1}{2} \end{array}\right]$$

Exercise 12: We argue by the conclusions of exercise 8.a) and 8.b). Let *U* be a subspace of *V* and $T: V \rightarrow W$ a linear map. Since $0 \in U$ we have that $0 = T(0) \in T(U)$. So T(U) is non-empty. Now suppose $u, v \in T(U)$ and $c \in \mathbb{R}$, then there exists $u', v' \in U$ such that T(u') = u and T(v') = v, now since *U* is a subspace we have that $cu' + v' \in U$, so $T(cu' + v') \in T(U)$. Now, using linearity we have that:

$$T(cu' + v') = cT(u') + T(v') = cu + v.$$

So T(U) is a subspace of W.

Exercise 13:

a) To check if a function $T : \mathcal{P} \to \mathcal{P}$ is linear, we must check two conditions: i) $T(p_1(x) + p_2(x)) = T(p_1(x)) + T(p_2(x))$ for all polynomials $p_1(x) \text{ og } p_2(x)$, and ii) $T(c \cdot p(x)) = cT(p(x))$ for all polynomials p(x) and scalars *c*.

A polynomial may be written $p(x) = a_0 + a_1x + \cdots + a_nx^n$. The derivative of p is $D(p(x)) = a_1 + 2a_2x + 3a_3x^2 + \cdots + na_nx^{n-1}$. You may explicitly check that this formula (satisfies i) og ii)).

G: i)

$$G(p_1(x) + p_2(x)) = x \cdot (p_1(x) + p_2(x))$$

= $x \cdot p_1(x) + x \cdot p_2(x)$
= $G(p_1(x)) + G(p_2(x)).$

ii)

$$G(c \cdot p(x)) = x \cdot (c \cdot p(x)) = c \cdot (x \cdot p(x)) = c \cdot G(p(x)).$$

b) The image of *D* is all polynomials which may be written as the derivative of another polynomial. Given a polynomial

$$p(x) = a_0 + a_1 x + \dots + a_n x^n$$

, we see that

$$P(x) = a_0 x + \frac{a_1}{2} x^2 + \frac{a_2}{3} x^3 + \dots + \frac{a_n}{n+1} x^{n+1}$$

is the antiderivative of p; P' = p. But this means that p = D(P). Thus, the image of D is \mathcal{P} ; all polynomials can be written as the polynomial of the derivative of another polynomical.

The kernel of D is all polynomials which are sent to zero, i.e., all polynomial whose derivative is zero. These are the constant polynomials. The kernel of D are all the constant polynomials.

The image of *G* are all polynomials p(x) written as p(x) = G(q(x)) for some polynomial q(x). That is, p(x) = xq(x). The images is thus all polynomials with *x* as a factor, or – equivalently – minimum one zero in x = 0.

The kernel of *G* are alle polynomials p(x) for which $G(p(x)) = x \cdot p(x) = 0$. This is only the zero-polynomial.

c) Remember that a linear transformation $T: V \rightarrow W$ is injective if and only if the kernel only consists of the zero-vector; surjectivity if and only if the image is W. From **b**) it follows that *D* is surjective, but not

injective; *G* is injective, not surjective.

d) If we use the product rule for derivation (Matte 1), we see that

$$(x \cdot p(x))' = x' \cdot p(x) + x \cdot p'(x) = p(x) + x \cdot p'(x).$$

Thus:

$$D(G(p(x))) = p(x) + G(D(p(x)))$$

which means

$$(D \circ G)(p) - (G \circ D)(p) = p$$

for any polynomial *p*, hence

$$(D \circ G) - (G \circ D) = \mathrm{id}_{\mathcal{P}}$$

e) Let \mathbf{e}_0 , \mathbf{e}_1 , \mathbf{e}_2 an \mathbf{e}_3 be polynomials given by:

$$e_0(x) = 1$$
 $e_2(x) = x^2$
 $e_1(x) = x$ $e_3(x) = x^3$

Then $(\mathbf{e}_0, \mathbf{e}_1, \mathbf{e}_2)$ is a basis for \mathcal{P}_2 , and $(\mathbf{e}_0, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ a basis for \mathcal{P}_3 .

With respect to these bases we get the following matrices:

The matrix for
$$D_3$$
:
$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$
The matrix for G_3 :
$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$