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TMA4110 Matematikk 3

Brief solutions to Assignment 3
Chapter 7

Exercise 1: Make it clear to your self what you have
to prove, and remember that addition and scalar
multiplication is done point-wise.

The difference is that one is the zero vector, that is
an element of V and the other is the zero scalar. One
example is 0 ∈ R and (0,0)T ∈ R2.

Exercise 2:

Yes. This is the line y = −x going through
origo.

a)

No. this set does not contain the zero vector.b)

No. This set is not closed under scalar
multiplication with real scalars.

c)

Exercise 3: Make it clear to your self what you have
to prove, and remember that addition and scalar
multiplication is done point-wise.

Let Tn denote the set of lower triangular n × n-
matrices. We have to show 3 things. That the zero
vector is in Tn, that if v, u ∈ Tn then u+ v ∈ Tn and if
a ∈ C and u ∈ Tn then au ∈ Tn. The zero vector in Mn

is the 0 matrix, this is lower triangular, so 0 ∈ Tn. If
u and v are lower triangular, then (u+ v)i j = ui j + vi j,
so it follows that u+ v is lower triangular. Closure
under scalar multiplication is done similarly.

Exercise 4: Check if Av = 0 and use Gauss
elimination to determine the basis for ColA.

The dimension of Col A is the number of pivot
elements of the reduced row echelon form of A.

Exercise 5: We solve the question for A

A=







5 −3 2 21 −3

0 1 −2 3 1

1 0 −1 −7 −1






∼







1 0 0 58 4

0 1 0 133 11

0 0 1 65 5






.

So we have that
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is a basis for Col A. We also have that
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is a basis for Null A. Finally, since every row had a
pivot element we get that the rows of A form a basis
for Row A.
Exercise 6:

We can for instance choose (1, x , x2). A basis
is – per definition – a list of vectors which span
out the space and is linearly independent. To
span out: Any arbitrary vector a+ bx + cx2 is a
linear combination a ·1+ b · x + c · x2 av 1, x og
x2. Linearly independent: Given an equation
a·1+b·x+c ·x2 = 0, we must show that we only
have the trivial solution. But a polynomial of
degree 2 can maximally have two zeros, hence
the equation cannot hold unless a = 0, b = 0

og c = 0; i.e., we only have the trivial solution.

a)

In the basis coordinates chosein in a), a
polynomial a0 + a1 x + a2 x2 corresponds to

the vector







a0

a1

a2






. In particular, 1+ 2x + 3x3 is

written







1

2

3






.

b)

The standrad basis for Pn is {1, x , x2, · · · , xn}.c)

Exercise 7:

a) Since A has 4 rows, then Col A⩽ 4.

b) By rank-nullity we have that

5= Null A+ dim(Col A) = 2+ dim(Col A)

which implies that dim(Col A) = 3. It follows
that there must be 3 linearly independent
columns.
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c) If A is non-zero, then there exists some v with
Av ̸= 0. It follows that dim Col A ⩾ 1. Now
by Theorem 7.26 we have that dimCol A =

dim Row A so there must be a least one linearly
independent.

d) We have that dim Row(AT ) = dimCol(A), so by
rank-nullity we have that dimCol(A) = 2.

e) No since dimCol A⩽ 4 we have by rank-nullity
that Null A⩾ 1.

Exercise 8:

a) The two are equivalent. It is clear that if U is
a subspace then cu + v ∈ U for u, v ∈ U and
c ∈ R. So we assume that the statement in the
exercise holds. Note that if we set u = v and
c = −1, then cu + v = −u + u = 0 so 0 ∈ U .
Furthermore, if we set c = 1 then u+ v ∈ U if
u, v ∈ U .

b) Yes. Since U is non-empty then there exists an
x ∈ U , so by the above we have that −x+ x ∈ U ,
but −x + x = 0.

Chapter 8

Exercise 9:

a) We have to find a, b ∈ R such that

a
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+ b
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�
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2
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.

Solving the linear system we get that
�

1 −1 5

2 3 2

�

∼

�

1 0 17
5

0 1 −8
5

�

.

so setting a = 17
5 and b = −8

5 we get what we
wanted. Now by linearity
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.

b) This is the same procedure as a), but with the
vectors e1, e2.

c) T cannot be surjective since dimR2 < dimR3.
On the other hand we do have that T is injective.
To see this note that dim im T = 2, since the
vectors given in the description of the exercise
are linearly independent. Now by rank-nullity

this implies dim ker T = 0, so ker T = {0},
which is equivalent to T being injective.

Exercise 10: For the standard matrix note that the
standard matrix of a composite is the product of the
matrices. To determine the kernel of R◦T note that R

is injective so ker(R ◦ T ) = ker T . Now 3x1 + 2x2 = 0

if and only if −3/2x1 = x2. So the kernel is exactly
the vectors in R2 satisfying this relationship.

Exercise 11: We consider the matrix
�

1 0 2 1

1 −2 3 0

�

∼

�

1 0 2 1

0 1 −1
2

1
2

�

to see that the base-change matrix must be
�

2 1

−1
2

1
2

�

Exercise 12: We argue by the conclusions of exercise
8.a) and 8.b). Let U be a subspace of V and
T : V → W a linear map. Since 0 ∈ U we have
that 0 = T (0) ∈ T (U). So T (U) is non-empty. Now
suppose u, v ∈ T (U) and c ∈ R, then there exists
u′, v′ ∈ U such that T (u′) = u and T (v′) = v, now
since U is a subspace we have that cu′ + v′ ∈ U , so
T (cu′+ v′) ∈ T (U). Now, using linearity we have that:

T (cu′ + v′) = cT (u′) + T (v′) = cu+ v.

So T (U) is a subspace of W .

Exercise 13:
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To check if a function T : P → P is linear,
we must check two conditions: i) T (p1(x) +

p2(x)) = T (p1(x)) + T (p2(x)) for all polynomi-
als p1(x) og p2(x), and ii) T (c·p(x)) = cT (p(x))

for all polynomials p(x) and scalars c.
A polynomial may be written p(x) = a0+ a1 x +

· · · + an xn. The derivative of p is D(p(x)) =

a1 + 2a2 x + 3a3 x2 + · · · + nan xn−1. You may
explicitly check that this formula (satisfies i) og
ii)).
G: i)

G(p1(x) + p2(x)) = x · (p1(x) + p2(x))

= x · p1(x) + x · p2(x)

= G(p1(x)) + G(p2(x)).

ii)

G(c·p(x)) = x ·(c·p(x)) = c·(x ·p(x)) = c·G(p(x)).

a)

The image of D is all polynomials which may be
written as the derivative of another polynomial.
Given a polynomial

p(x) = a0 + a1 x + · · ·+ an xn

, we see that

P(x) = a0 x +
a1

2
x2 +

a2

3
x3 + · · ·+

an

n+ 1
xn+1

is the antiderivative of p; P ′ = p. But this means
that p = D(P). Thus, the image of D is P; all
polynomials can be written as the polynomial
of the derivative of another polynomical.
The kernel of D is all polynomials which are sent
to zero, i.e., all polynomial whose derivative is
zero. These are the constant polynomials. The
kernel of D are all the constant polynomials.
The image of G are all polynomials p(x)written
as p(x) = G(q(x)) for some polynomial q(x).
That is, p(x) = xq(x). The images is thus all
polynomials with x as a factor, or – equivalently
– minimum one zero in x = 0.
The kernel of G are alle polynomials p(x) for
which G(p(x)) = x · p(x) = 0. This is only the
zero-polynomial.

b)

Remember that a linear transformation T : V →
W is injective if and only if the kernel only
consists of the zero-vector; surjectivity if and
only if the image is W .
From b) it follows that D is surjective, but not
injective; G is injective, not surjective.

c)

If we use the product rule for derivation (Matte
1), we see that

(x ·p(x))′ = x ′ ·p(x)+x ·p′(x) = p(x)+x ·p′(x).

Thus:

D(G(p(x))) = p(x) + G(D(p(x)))

which means

(D ◦ G)(p)− (G ◦ D)(p) = p

for any polynomial p, hence

(D ◦ G)− (G ◦ D) = idP

d)

Let e0, e1, e2 an e3 be polynomials given by:

e0(x) = 1 e2(x) = x2

e1(x) = x e3(x) = x3

Then (e0,e1,e2) is a basis for P2, and
(e0,e1,e2,e3) a basis for P3.
With respect to these bases we get the following
matrices:

The matrix for D3:







0 1 0 0

0 0 2 0

0 0 0 3







The matrix for G3:











0 0 0

1 0 0

0 1 0

0 0 1











e)


