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Brief solutions to Assignment 3

Chapter 7

Exercise 1: Make it clear to your self what you have
to prove, and remember that addition and scalar
multiplication is done point-wise.

The difference is that one is the zero vector, that is
an element of V and the other is the zero scalar. One
example is 0 € R and (0,0)” € R2.

Exercise 2:

a) Yes. This is the line y = —x going through
origo.

b) No. this set does not contain the zero vector.

¢) No. This set is not closed under scalar

multiplication with real scalars.

Exercise 3: Make it clear to your self what you have
to prove, and remember that addition and scalar
multiplication is done point-wise.

Let T, denote the set of lower triangular n x n-
matrices. We have to show 3 things. That the zero
vector is in T,, that if v,u € T, thenu+v € T, and if
a € Cand u € T, then au € T,.. The zero vector in M,
is the 0 matrix, this is lower triangular, so 0 € T,,. If
u and v are lower triangular, then (u+v);; = u;; + vy,
so it follows that u + v is lower triangular. Closure
under scalar multiplication is done similarly.

Exercise 4: Check if Av = 0 and use Gauss
elimination to determine the basis for ColA.

The dimension of ColA is the number of pivot
elements of the reduced row echelon form of A.

Exercise 5: We solve the question for A

5 -3 2 21 -3 1 0 0 58
A=]10 1 -2 3 1 ~1 0 1 0 133 11
1 0 -1 =7 -1 0 01 65

So we have that

is a basis for ColA. We also have that

—58 —4 )
—133 —11

1 0

0 1 )

is a basis for NullA. Finally, since every row had a
pivot element we get that the rows of A form a basis
for RowA.

Exercise 6:

a) We can for instance choose (1, x,x2). A basis
is — per definition — a list of vectors which span
out the space and is linearly independent. To
span out: Any arbitrary vector a + bx +cx? is a
linear combination a-1+b-x+c-x? av 1, x og
x2. Linearly independent: Given an equation
a-1+b-x+c-x% = 0, we must show that we only
have the trivial solution. But a polynomial of
degree 2 can maximally have two zeros, hence
the equation cannot hold unless a =0, b =0
og ¢ = 0; i.e., we only have the trivial solution.

b) In the basis coordinates chosein in a), a
polynomial a, + a;x + a,x? corresponds to

g
the vector | a; | . In particular, 1+ 2x + 3x? is

as
1
written | 2
3
¢) The standrad basis for P, is {1, x,x2,---,x"}.

Exercise 7:

a) Since A has 4 rows, then ColA < 4.
b) By rank-nullity we have that
5 = NullA + dim(ColA) = 2 + dim(Col A)

which implies that dim(ColA) = 3. It follows
that there must be 3 linearly independent
columns.
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¢) If Ais non-zero, then there exists some v with
Av # 0. It follows that dimColA > 1. Now
by Theorem 7.26 we have that dimColA =
dim RowA so there must be a least one linearly
independent.

d) We have that dim Row(A”) = dim Col(A), so by
rank-nullity we have that dim Col(A) = 2.

e) No since dim ColA < 4 we have by rank-nullity
that NullA > 1.
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a) The two are equivalent. It is clear that if U is
a subspace then cu+v € U for u,v € U and
c € R. So we assume that the statement in the
exercise holds. Note that if we set u = v and
c=-1,thencu+v=—-u+u=0s00¢€U.
Furthermore, if we set c =1 thenu+v € U if
u,veUl.

b) Yes. Since U is non-empty then there exists an
x € U, so by the above we have that —x+x € U,

Exercise 8: but —x + x = 0.
Chapter 8
Exercise 9: this implies dimkerT = 0, so kerT = {0},

a) We have to find a, b € R such that

(2 (3)-(2)

Solving the linear system we get that

1 -115 1 0¥
2 3|2 0o 1|-% ]|

so setting a = % and b = —% we get what we

iy
S ()

7 [ 2 T
=—-| 2 |[-2| 1
5 5
—1 1
17
— 26
=1 5
-5

b) This is the same procedure as a), but with the
vectors eq, e;.

¢) T cannot be surjective since dimR? < dimR>.
On the other hand we do have that T is injective.
To see this note that dimim T = 2, since the
vectors given in the description of the exercise
are linearly independent. Now by rank-nullity

which is equivalent to T being injective.

Exercise 10: For the standard matrix note that the
standard matrix of a composite is the product of the
matrices. To determine the kernel of Ro T note that R
is injective so ker(Ro T) =ker T. Now 3x; +2x, =0
if and only if —3/2x; = x,. So the kernel is exactly
the vectors in R? satisfying this relationship.

Exercise 11: We consider the matrix
1 0 (2 1 1 0
1 —2(3 O 01

to see that the base-change matrix must be

|

Exercise 12: We argue by the conclusions of exercise
8.a) and 8.b).
T:V — W a linear map. Since 0 € U we have
that 0 = T(0) € T(U). So T(U) is non-empty. Now
suppose u,v € T(U) and ¢ € R, then there exists
u’,v' € U such that T(v') = u and T(v') = v, now
since U is a subspace we have that cu’ + v’ € U, so

2

Nl— =
| IS

1
2

1
Nl= N
Nl— =

Let U be a subspace of V and

T(cu’+v’) € T(U). Now, using linearity we have that:
T(cu'+v)=cTW)+TW)=cu+v.

So T(U) is a subspace of W.

Exercise 13:
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a) To check if a function T : P — P is linear,

we must check two conditions: i) T(p;(x) +
p2(x)) = T(p1(x)) + T(pa(x)) for all polynomi-
als p;(x) 0g pa(x), and ii) T(c-p(x)) = cT(p(x))
for all polynomials p(x) and scalars c.

A polynomial may be written p(x) = ag+a;x +
.-+ 4+ a,x". The derivative of p is D(p(x)) =

n—1

a; + 2a,x + 3azx? + --- + na,x"*. You may

explicitly check that this formula (satisfies i) og
ii).
G: 1)
G(p1(x) +pa(x)) = x - (p1(x) + pa(x))
= x - p1(x) +x - pa(x)
= G(p1(x)) + G(py(x)).

ii)

G(c-p(x)) = x-(c-p(x)) = c+(x-p(x)) = c-G(p(x)).

b) The image of D is all polynomials which may be

written as the derivative of another polynomial.
Given a polynomial

n

p(x)=ap+a;x+---+a,x

, we see that

P(x)=agpx + N L. B
2 3 n+1

is the antiderivative of p; P’ = p. But this means
that p = D(P). Thus, the image of D is P; all
polynomials can be written as the polynomial
of the derivative of another polynomical.
The kernel of D is all polynomials which are sent
to zero, i.e., all polynomial whose derivative is
zero. These are the constant polynomials. The
kernel of D are all the constant polynomials.
The image of G are all polynomials p(x) written
as p(x) = G(q(x)) for some polynomial g(x).
That is, p(x) = xq(x). The images is thus all
polynomials with x as a factor, or — equivalently
— minimum one zero in x = 0.
The kernel of G are alle polynomials p(x) for
which G(p(x)) = x - p(x) = 0. This is only the
zero-polynomial.
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¢) Remember that a linear transformation T : V —

W is injective if and only if the kernel only
consists of the zero-vector; surjectivity if and
only if the image is W .

From b) it follows that D is surjective, but not
injective; G is injective, not surjective.

d) If we use the product rule for derivation (Matte

1), we see that
(x-p(x)) = x"-p(x)+x-p’(x) = p(x)+x-p’(x).
Thus:
D(G(p(x))) = p(x) + G(D(p(x)))
which means
(DoG)(p)—(GoD)(p)=p
for any polynomial p, hence

(DoG)—(GoD)=idp

e) Let ey, e;, e, an e; be polynomials given by:

e(x)=1 e,(x) = x?

3

e;(x)=x es(x)=x

Then (ey,e;,e;) is a basis for P,, and
(eg,€,e,,e3) a basis for Ps.
With respect to these bases we get the following

matrices:
[0 1 0 0
The matrix for D;: [0 0 2 0
_0 0 0 3
[0 0 0
1 0O
The matrix for Gj:
010
0 0 1




