Brief solutions to Assignment 3

Chapter 7

Exercise 1: Make it clear to your self what you have to prove, and remember that addition and scalar multiplication is done point-wise.
The difference is that one is the zero vector, that is an element of V and the other is the zero scalar. One example is $0 \in \mathbb{R}$ and $(0,0)^{T} \in \mathbb{R}^{2}$.

Exercise 2:

a) Yes. This is the line $y=-x$ going through origo.
b) No. this set does not contain the zero vector.
c) No. This set is not closed under scalar multiplication with real scalars.

Exercise 3: Make it clear to your self what you have to prove, and remember that addition and scalar multiplication is done point-wise.
Let T_{n} denote the set of lower triangular $n \times n$ matrices. We have to show 3 things. That the zero vector is in T_{n}, that if $v, u \in T_{n}$ then $u+v \in T_{n}$ and if $a \in \mathbb{C}$ and $u \in T_{n}$ then $a u \in T_{n}$. The zero vector in M_{n} is the 0 matrix, this is lower triangular, so $0 \in T_{n}$. If u and v are lower triangular, then $(u+v)_{i j}=u_{i j}+v_{i j}$, so it follows that $u+v$ is lower triangular. Closure under scalar multiplication is done similarly.
Exercise 4: Check if $A v=0$ and use Gauss elimination to determine the basis for $\operatorname{Col} A$.

The dimension of $\operatorname{Col} A$ is the number of pivot elements of the reduced row echelon form of A.

Exercise 5: We solve the question for A
$A=\left[\begin{array}{ccccc}5 & -3 & 2 & 21 & -3 \\ 0 & 1 & -2 & 3 & 1 \\ 1 & 0 & -1 & -7 & -1\end{array}\right] \sim\left[\begin{array}{ccccc}1 & 0 & 0 & 58 & 4 \\ 0 & 1 & 0 & 133 & 11 \\ 0 & 0 & 1 & 65 & 5\end{array}\right]$
So we have that

$$
\left\{\left(\begin{array}{l}
5 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
2 \\
-2 \\
-1
\end{array}\right)\right\}
$$

is a basis for $\operatorname{Col} A$. We also have that

$$
\left\{\left(\begin{array}{c}
-58 \\
-133 \\
-65 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-4 \\
-11 \\
-5 \\
0 \\
1
\end{array}\right)\right\}
$$

is a basis for NullA. Finally, since every row had a pivot element we get that the rows of A form a basis for RowA.

Exercise 6:

a) We can for instance choose $\left(1, x, x^{2}\right)$. A basis is - per definition - a list of vectors which span out the space and is linearly independent. To span out: Any arbitrary vector $a+b x+c x^{2}$ is a linear combination $a \cdot 1+b \cdot x+c \cdot x^{2}$ av $1, x$ og x^{2}. Linearly independent: Given an equation $a \cdot 1+b \cdot x+c \cdot x^{2}=0$, we must show that we only have the trivial solution. But a polynomial of degree 2 can maximally have two zeros, hence the equation cannot hold unless $a=0, b=0$ og $c=0$; i.e., we only have the trivial solution.
b) In the basis coordinates chosein in a), a polynomial $a_{0}+a_{1} x+a_{2} x^{2}$ corresponds to the vector $\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2}\end{array}\right]$. In particular, $1+2 x+3 x^{3}$ is written $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
c) The standrad basis for \mathcal{P}_{n} is $\left\{1, x, x^{2}, \cdots, x^{n}\right\}$.

Exercise 7:

a) Since A has 4 rows, then $\operatorname{Col} A \leqslant 4$.
b) By rank-nullity we have that

$$
5=\operatorname{Null} A+\operatorname{dim}(\operatorname{Col} A)=2+\operatorname{dim}(\operatorname{Col} A)
$$

which implies that $\operatorname{dim}(\operatorname{Col} A)=3$. It follows that there must be 3 linearly independent columns.
c) If A is non-zero, then there exists some v with $A v \neq 0$. It follows that $\operatorname{dim} \operatorname{Col} A \geqslant 1$. Now by Theorem 7.26 we have that $\operatorname{dim} \operatorname{Col} A=$ $\operatorname{dim} \operatorname{Row} A$ so there must be a least one linearly independent.
d) We have that $\operatorname{dim} \operatorname{Row}\left(A^{T}\right)=\operatorname{dim} \operatorname{Col}(A)$, so by rank-nullity we have that $\operatorname{dim} \operatorname{Col}(A)=2$.
e) No since $\operatorname{dim} \operatorname{Col} A \leqslant 4$ we have by rank-nullity that $\operatorname{Null} A \geqslant 1$.

Exercise 8:

Chapter 8

Exercise 9:

a) We have to find $a, b \in \mathbb{R}$ such that

$$
a\binom{1}{2}+b\binom{-1}{3}=\binom{5}{2} .
$$

Solving the linear system we get that

$$
\left[\begin{array}{cc|c}
1 & -1 & 5 \\
2 & 3 & 2
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & 0 & \frac{17}{5} \\
0 & 1 & -\frac{8}{5}
\end{array}\right] .
$$

so setting $a=\frac{17}{5}$ and $b=-\frac{8}{5}$ we get what we wanted. Now by linearity

$$
\begin{aligned}
T\left(\binom{5}{2}\right) & =T\left(\frac{17}{5}\binom{1}{2}-\frac{8}{5}\binom{-1}{3}\right) \\
& =\frac{17}{5} T\left(\binom{1}{2}\right)-\frac{8}{5} T\left(\binom{-1}{3}\right) \\
& =\frac{17}{5} \cdot\left(\begin{array}{c}
5 \\
2 \\
-1
\end{array}\right)-\frac{8}{5}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \\
& =\left(\begin{array}{c}
17 \\
\frac{26}{5} \\
-5
\end{array}\right)
\end{aligned}
$$

b) This is the same procedure as a), but with the vectors e_{1}, e_{2}.
c) T cannot be surjective since $\operatorname{dim} \mathbb{R}^{2}<\operatorname{dim} \mathbb{R}^{3}$. On the other hand we do have that T is injective. To see this note that $\operatorname{dimim} T=2$, since the vectors given in the description of the exercise are linearly independent. Now by rank-nullity
a) The two are equivalent. It is clear that if U is a subspace then $c u+v \in U$ for $u, v \in U$ and $c \in \mathbb{R}$. So we assume that the statement in the exercise holds. Note that if we set $u=v$ and $c=-1$, then $c u+v=-u+u=0$ so $0 \in U$. Furthermore, if we set $c=1$ then $u+v \in U$ if $u, v \in U$.
b) Yes. Since U is non-empty then there exists an $x \in U$, so by the above we have that $-x+x \in U$, but $-x+x=0$.
this implies $\operatorname{dim} \operatorname{ker} T=0$, so $\operatorname{ker} T=\{0\}$, which is equivalent to T being injective.

Exercise 10: For the standard matrix note that the standard matrix of a composite is the product of the matrices. To determine the kernel of $R \circ T$ note that R is injective so $\operatorname{ker}(R \circ T)=\operatorname{ker} T$. Now $3 x_{1}+2 x_{2}=0$ if and only if $-3 / 2 x_{1}=x_{2}$. So the kernel is exactly the vectors in \mathbb{R}^{2} satisfying this relationship.

Exercise 11: We consider the matrix

$$
\left[\begin{array}{cc|cc}
1 & 0 & 2 & 1 \\
1 & -2 & 3 & 0
\end{array}\right] \sim\left[\begin{array}{cc|cc}
1 & 0 & 2 & 1 \\
0 & 1 & -\frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

to see that the base-change matrix must be

$$
\left[\begin{array}{cc}
2 & 1 \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

Exercise 12: We argue by the conclusions of exercise 8.a) and 8.b). Let U be a subspace of V and $T: V \rightarrow W$ a linear map. Since $0 \in U$ we have that $0=T(0) \in T(U)$. So $T(U)$ is non-empty. Now suppose $u, v \in T(U)$ and $c \in \mathbb{R}$, then there exists $u^{\prime}, v^{\prime} \in U$ such that $T\left(u^{\prime}\right)=u$ and $T\left(v^{\prime}\right)=v$, now since U is a subspace we have that $c u^{\prime}+v^{\prime} \in U$, so $T\left(c u^{\prime}+v^{\prime}\right) \in T(U)$. Now, using linearity we have that:

$$
T\left(c u^{\prime}+v^{\prime}\right)=c T\left(u^{\prime}\right)+T\left(v^{\prime}\right)=c u+v
$$

So $T(U)$ is a subspace of W.

Exercise 13:

a) To check if a function $T: \mathcal{P} \rightarrow \mathcal{P}$ is linear, we must check two conditions: i) $T\left(p_{1}(x)+\right.$ $\left.p_{2}(x)\right)=T\left(p_{1}(x)\right)+T\left(p_{2}(x)\right)$ for all polynomials $p_{1}(x)$ og $p_{2}(x)$, and ii) $T(c \cdot p(x))=c T(p(x))$ for all polynomials $p(x)$ and scalars c.
A polynomial may be written $p(x)=a_{0}+a_{1} x+$ $\cdots+a_{n} x^{n}$. The derivative of p is $D(p(x))=$ $a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+n a_{n} x^{n-1}$. You may explicitly check that this formula (satisfies i) og ii)).

G: i)

$$
\begin{aligned}
G\left(p_{1}(x)+p_{2}(x)\right) & =x \cdot\left(p_{1}(x)+p_{2}(x)\right) \\
& =x \cdot p_{1}(x)+x \cdot p_{2}(x) \\
& =G\left(p_{1}(x)\right)+G\left(p_{2}(x)\right) .
\end{aligned}
$$

ii)
$G(c \cdot p(x))=x \cdot(c \cdot p(x))=c \cdot(x \cdot p(x))=c \cdot G(p(x))$.
b) The image of D is all polynomials which may be written as the derivative of another polynomial. Given a polynomial

$$
p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

, we see that

$$
P(x)=a_{0} x+\frac{a_{1}}{2} x^{2}+\frac{a_{2}}{3} x^{3}+\cdots+\frac{a_{n}}{n+1} x^{n+1}
$$

is the antiderivative of $p ; P^{\prime}=p$. But this means that $p=D(P)$. Thus, the image of D is \mathcal{P}; all polynomials can be written as the polynomial of the derivative of another polynomical.
The kernel of D is all polynomials which are sent to zero, i.e., all polynomial whose derivative is zero. These are the constant polynomials. The kernel of D are all the constant polynomials. The image of G are all polynomials $p(x)$ written as $p(x)=G(q(x))$ for some polynomial $q(x)$. That is, $p(x)=x q(x)$. The images is thus all polynomials with x as a factor, or - equivalently - minimum one zero in $x=0$.

The kernel of G are alle polynomials $p(x)$ for which $G(p(x))=x \cdot p(x)=0$. This is only the zero-polynomial.
c) Remember that a linear transformation $T: V \rightarrow$ W is injective if and only if the kernel only consists of the zero-vector; surjectivity if and only if the image is W.
From b) it follows that D is surjective, but not injective; G is injective, not surjective.
d) If we use the product rule for derivation (Matte 1), we see that
$(x \cdot p(x))^{\prime}=x^{\prime} \cdot p(x)+x \cdot p^{\prime}(x)=p(x)+x \cdot p^{\prime}(x)$.
Thus:

$$
D(G(p(x)))=p(x)+G(D(p(x)))
$$

which means

$$
(D \circ G)(p)-(G \circ D)(p)=p
$$

for any polynomial p, hence

$$
(D \circ G)-(G \circ D)=\operatorname{id}_{\mathcal{P}}
$$

e) Let $\mathbf{e}_{0}, \mathbf{e}_{1}, \mathbf{e}_{2}$ an \mathbf{e}_{3} be polynomials given by:

$$
\begin{array}{ll}
\mathbf{e}_{0}(x)=1 & \mathbf{e}_{2}(x)=x^{2} \\
\mathbf{e}_{1}(x)=x & \mathbf{e}_{3}(x)=x^{3}
\end{array}
$$

Then $\left(\mathbf{e}_{0}, \mathbf{e}_{1}, \mathbf{e}_{2}\right)$ is a basis for \mathcal{P}_{2}, and $\left(\mathbf{e}_{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ a basis for \mathcal{P}_{3}.
With respect to these bases we get the following matrices:

The matrix for $D_{3}:\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3\end{array}\right]$
The matrix for $G_{3}:\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

