EXTRA TASKS

1. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by

$$T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}1\\-2\\1\end{bmatrix}, \ T\left(\begin{bmatrix}-1\\2\\0\end{bmatrix}\right) = \begin{bmatrix}1\\4\\1\end{bmatrix} \text{ and } T\left(\begin{bmatrix}1\\3\\-1\end{bmatrix}\right) = \begin{bmatrix}3\\1\\5\end{bmatrix}.$$

- i. Find the standard matrix A corresponding to the transformation T.
- ii. Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be the columns of A. Show that the columns of A form an orthogonal set and find the orthogonal projection of the vector $\mathbf{u} = \begin{bmatrix} 2\\1\\3 \end{bmatrix}$ to $\operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_3\}$.

2. Show in each of the following cases whether or not the subsets of the given vector spaces are subspaces.

i.
$$U_1 = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} \mid 2a - 3b = 0 \text{ and } a, b \in \mathbb{R} \right\} \subseteq \mathbb{R}^2$$

ii. $U_2 = \left\{ \begin{bmatrix} a & 0 \\ c & d \end{bmatrix} \mid ad = 0 \text{ and } a, c, d \in \mathbb{R} \right\} \subseteq M_{2 \times 2}$, where $M_{2 \times 2}$ is the vector space of all 2×2 matrices.
iii. $U_3^m = \left\{ \begin{bmatrix} 6s - 4t \\ 2s + t \\ t - m \end{bmatrix} \mid s, t \in \mathbb{R} \right\} \subseteq \mathbb{R}^3$
a. when $m = 0$ and

3. Let $C[0, \pi/2]$ be the vector space of continuous functions defined on $[0, \pi/2]$ with inner product

$$\langle f,g\rangle = \int_0^{\frac{\pi}{2}} f(t)g(t) \ dt,$$

where $f, g \in C[0, \pi/2]$. Let $W = \text{Span}\{1, \sin t\}$.

- i. Is the set $\{1, \sin t\}$ an orthogonal set? Justify your answer.
- ii. Find an orthogonal basis for W.

b. when m = 1.

4. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by

$$T\left(\begin{bmatrix} x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix} 2x_1 - 3x_2\\-6x_1 + 9x_2\end{bmatrix}.$$

i. Is T injective?

- ii. Is T surjective?
- 5. Let $S: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation defined by

$$S\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix}x_1+x_2+2x_3\\2x_1+x_2+x_3\end{bmatrix}.$$

- i. Is S injective?
- ii. Is S surjective?
- 6. Find the general solution of the system

$$(i-1)x_1 -4x_2 = 4$$

$$ix_1 -2ix_2 +(2i+1)x_3 = i+1$$

$$(3i+1)x_1 +(2i-1)x_3 = 5.$$