Problem 1 Find all solutions to the linear system

$$
\left\{\begin{aligned}
x-y-3 z & =2 \\
-x+2 y+5 z & =-1 \\
3 x+3 y+3 z & =12
\end{aligned}\right.
$$

Problem $2 \bullet$ Solve $z^{4}=(1-\mathrm{i})^{12}$ for $z \in \mathbb{C}$ and \bullet sketch the root(s) in the complex plane.

Problem 3 Find the general solution to

$$
y^{\prime \prime}(t)-4 y^{\prime}(t)+4 y(t)=t^{2}+1 .
$$

Problem 4 - Calculate a basis for both $\operatorname{Null} A$ and $\operatorname{Col} A$ when

$$
A=\left[\begin{array}{rrrr}
1 & -2 & 1 & 8 \\
-1 & 2 & 1 & -2 \\
1 & -2 & -2 & -1
\end{array}\right],
$$

and \bullet determine the dimension of $\operatorname{Null}\left(A^{\top}\right)$, where A^{\top} is the transpose matrix of A.

Problem 5 - Find the eigenvalues of

$$
A=\left[\begin{array}{rr}
2 & -1 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

when it is known that $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ are eigenvectors.

- Then solve the initial-value problem

$$
\left\{\begin{array}{rl}
\frac{\mathrm{d} x_{1}}{\mathrm{~d} t} & =2 x_{1}-x_{2} \\
\frac{\mathrm{~d} x_{2}}{\mathrm{~d} t} & =\frac{1}{2} x_{1}+\frac{1}{2} x_{2}
\end{array} \quad x_{1}(0)=1, \quad x_{2}(0)=-1\right.
$$

Problem 6 Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation for which

$$
T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { and } \quad T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{r}
-1 \\
1
\end{array}\right] .
$$

Determine $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$ and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$.
Problem $7 \quad$ Let $V \subseteq \mathbb{R}^{3}$ be the linear span $\operatorname{Sp}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]\right\}$.

- Compute the orthogonal projection of $\boldsymbol{b}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$ onto V.
- Find the least-squares solution to
- Find the least-squares solution to

$$
\left\{\begin{array}{l}
x_{1}+x_{2}=1 \\
x_{1}+x_{2}=0 \\
x_{1}-x_{2}=2
\end{array}\right.
$$

Problem 8 Find the matrix A which satisfies the equation

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & -2 & -1
\end{array}\right] \quad A\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]=\left[\begin{array}{rr}
1 & 1 \\
-1 & 1 \\
1 & 3
\end{array}\right] .
$$

Problem 9 Let

$$
\mathcal{P}_{2}(\mathbb{R})=\left\{p: \mathbb{R} \rightarrow \mathbb{R} \mid p(x)=a x^{2}+b x+c \text { for coefficients } a, b, c \in \mathbb{R}\right\}
$$

be the vector space of real polynomials of degree at most 2 .

- Show that $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ defined by

$$
T(p)=\left[\begin{array}{c}
p(0) \\
p^{\prime}(1) \\
p^{\prime \prime}(2)
\end{array}\right] \quad\left(p^{\prime}(x)=\frac{\mathrm{d} p}{\mathrm{~d} x}(x), \quad p^{\prime \prime}(x)=\frac{\mathrm{d}^{2} p}{\mathrm{~d} x^{2}}(x)\right)
$$

is a linear transformation and \bullet determine $\operatorname{ker} T$.

Problem 10 Let A be a column vector (that is, an $n \times 1$ matrix) and let B be a matrix such that the product $A B$ is a well-defined square matrix.

- Determine the number of rows and columns in B and $A B$.
- Find the rank of $A B$ assuming that $A B$ is a nonzero matrix.

