$$A = \begin{bmatrix} 5 & -15 & -1 & 12 \\ -2 & 6 & 0 & -4 \\ 4 & -12 & -2 & 12 \end{bmatrix}$$

• Also determine dim $\operatorname{Null}(A^{\top})$.

Problem 2 Find the solution of the system

$$\begin{aligned}
 x_1' &= x_1 + 2x_2 \\
 x_2' &= 4x_1 + 3x_2
 \end{aligned}$$

that satisfies the conditions $x_1(0) = 1$ and $x_2(0) = 5$.

Problem 3 Determine all the complex solutions of the equation

$$z^3 - 3z^2 + 6z - 4 = 0.$$

Write the solutions in polar form. Hint: Maybe you can directly see one solution?

Problem 4 • Compute the determinant of

$$A = \begin{bmatrix} 0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ -2 & -5 & 4 & -2 \end{bmatrix}.$$

• What is the number of solutions to the system of equations

$$A\boldsymbol{x} = \begin{bmatrix} 6\\-12\\13\\5\end{bmatrix}?$$

(Justify your answer.)

Problem 5 • Determine whether the polynomials

$$p(t) = 2 - t$$
, $q(t) = 1 + t^2$ and $r(t) = 1 + 2t - 3t^2$

are linearly independent or not in $\mathcal{P}_2(\mathbb{R})$, the vector space of real second-degree polynomials.

• Then determine whether p and q are orthogonal with respect to the inner product

$$\langle f,g\rangle = \sum_{k=0}^{2} f(k)g(k), \qquad f,g \in \mathcal{P}_{2}(\mathbb{R}).$$

TMA4110 Mathematics 3 - Linear algebra – December 14, 2023

Problem 6 Find the general solution to the differential equation

$$y'' + y' - 6y = 5e^{2t} - 36t.$$

Problem 7 An orthogonal basis for the column space of the matrix

A =	Γ1	3	5
	1	1	0
	1	1	2
	1	3	3

is given by $\{\boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3\}$, where

$$oldsymbol{u}_1 = egin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix}, \quad oldsymbol{u}_2 = egin{bmatrix} 1 \ -1 \ -1 \ 1 \end{bmatrix} \quad ext{and} \quad oldsymbol{u}_3 = egin{bmatrix} 1 \ -1 \ 1 \ 1 \ -1 \end{bmatrix}.$$

• Compute the projection of
$$\boldsymbol{b} = \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix}$$
 onto Col A. (The answer is $\begin{bmatrix} -1/2\\1/2\\1/2\\-1/2 \end{bmatrix}$.)

• Find the least-squares solution to the overdetermined system Ax = b.

Problem 8 Two different ordered bases for \mathbb{R}^2 are $\mathscr{B} = (\boldsymbol{b}_1, \boldsymbol{b}_2)$ and $\mathscr{C} = (\boldsymbol{c}_1, \boldsymbol{c}_2)$, where $\boldsymbol{b}_1 = \begin{bmatrix} -1\\8 \end{bmatrix}, \quad \boldsymbol{b}_2 = \begin{bmatrix} 1\\-5 \end{bmatrix}, \quad \boldsymbol{c}_1 = \begin{bmatrix} 1\\4 \end{bmatrix} \text{ and } \boldsymbol{c}_2 = \begin{bmatrix} 1\\1 \end{bmatrix}.$

- A vector has coordinates $\begin{bmatrix} 1\\ 2 \end{bmatrix}$ with respect to basis \mathscr{B} . What are the coordinates of this vector in the standard basis?
- Determine the change-of-basis matrix from \mathscr{C} to \mathscr{B} .

Problem 9 Let $T: V \to W$ be a linear transformation between two vector spaces V and W, and let U be a subspace of V. Show that

$$T(U) = \{T(u) \mid u \in U\}$$

is a subspace of W.

Problem 10 Let $A \neq 0$ be an $n \times n$ matrix for which $A^3 = 0$. Show that I - A is an invertible matrix. *Hint: A matrix B is invertible if there exists a matrix C such that BC = I = CB.*