Problem 1 - Compute a basis for the column space and the null space of the matrix

$$
A=\left[\begin{array}{rrrr}
5 & -15 & -1 & 12 \\
-2 & 6 & 0 & -4 \\
4 & -12 & -2 & 12
\end{array}\right] .
$$

- Also determine $\operatorname{dim} \operatorname{Null}\left(A^{\top}\right)$.

Problem 2 Find the solution of the system

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+2 x_{2} \\
& x_{2}^{\prime}=4 x_{1}+3 x_{2}
\end{aligned}
$$

that satisfies the conditions $x_{1}(0)=1$ and $x_{2}(0)=5$.

Problem 3 Determine all the complex solutions of the equation

$$
z^{3}-3 z^{2}+6 z-4=0
$$

Write the solutions in polar form. Hint: Maybe you can directly see one solution?

Problem 4 - Compute the determinant of

$$
A=\left[\begin{array}{rrrr}
0 & 1 & 2 & -1 \\
2 & 5 & -7 & 3 \\
0 & 3 & 6 & 2 \\
-2 & -5 & 4 & -2
\end{array}\right]
$$

- What is the number of solutions to the system of equations

$$
A \boldsymbol{x}=\left[\begin{array}{r}
6 \\
-12 \\
13 \\
5
\end{array}\right] ?
$$

(Justify your answer.)

Problem 5 - Determine whether the polynomials

$$
p(t)=2-t, \quad q(t)=1+t^{2} \quad \text { and } \quad r(t)=1+2 t-3 t^{2}
$$

are linearly independent or not in $\mathcal{P}_{2}(\mathbb{R})$, the vector space of real second-degree polynomials.

- Then determine whether p and q are orthogonal with respect to the inner product

$$
\langle f, g\rangle=\sum_{k=0}^{2} f(k) g(k), \quad f, g \in \mathcal{P}_{2}(\mathbb{R})
$$

Problem 6 Find the general solution to the differential equation

$$
y^{\prime \prime}+y^{\prime}-6 y=5 \mathrm{e}^{2 t}-36 t
$$

Problem 7 An orthogonal basis for the column space of the matrix

$$
A=\left[\begin{array}{lll}
1 & 3 & 5 \\
1 & 1 & 0 \\
1 & 1 & 2 \\
1 & 3 & 3
\end{array}\right]
$$

is given by $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$, where

$$
\boldsymbol{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \boldsymbol{u}_{2}=\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1
\end{array}\right] \quad \text { and } \quad \boldsymbol{u}_{3}=\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

- Compute the projection of $\boldsymbol{b}=\left[\begin{array}{r}-1 \\ 0 \\ 1 \\ 0\end{array}\right]$ onto $\operatorname{Col} A$. (The answer is $\left[\begin{array}{r}-1 / 2 \\ 1 / 2 \\ 1 / 2 \\ -1 / 2\end{array}\right]$. .)
- Find the least-squares solution to the overdetermined system $A \boldsymbol{x}=\boldsymbol{b}$.

Problem 8 Two different ordered bases for \mathbb{R}^{2} are $\mathscr{B}=\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right)$ and $\mathscr{C}=\left(\boldsymbol{c}_{1}, \boldsymbol{c}_{2}\right)$, where

$$
\boldsymbol{b}_{1}=\left[\begin{array}{r}
-1 \\
8
\end{array}\right], \quad \boldsymbol{b}_{2}=\left[\begin{array}{r}
1 \\
-5
\end{array}\right], \quad \boldsymbol{c}_{1}=\left[\begin{array}{l}
1 \\
4
\end{array}\right] \quad \text { and } \quad \boldsymbol{c}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

- A vector has coordinates $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ with respect to basis \mathscr{B}. What are the coordinates of this vector in the standard basis?
- Determine the change-of-basis matrix from \mathscr{C} to \mathscr{B}.

Problem 9 Let $T: V \rightarrow W$ be a linear transformation between two vector spaces V and W, and let U be a subspace of V. Show that

$$
T(U)=\{T(u) \mid u \in U\}
$$

is a subspace of W.

Problem $10 \quad$ Let $A \neq 0$ be an $n \times n$ matrix for which $A^{3}=0$. Show that $I-A$ is an invertible matrix. Hint: A matrix B is invertible if there exists a matrix C such that $B C=I=C B$.

