Contact during the exam: Eldar Straume
(Telephone 735 96683)

EXAM IN MA1201 LINEAR ALGEBRA AND GEOMETRY

Monday 3rd December 2007
Time: kl. 09.00-13.00
Permitted aids: No permitted aids.
English

All answers must be justified. All problems will count the same when grading the exam. Grades: 21st December 2007.

Problem 1

a) We consider the following system of equations

$$
\begin{aligned}
x+2 y-3 z & =1 \\
2 x+y+3 \alpha z & =2 \\
2 x+2 z & =\beta
\end{aligned}
$$

where α and β are constants. For what values of α and β does the system of equations have
(i) no solutions
(ii) infinite number of solutions
(iii) exactly one solution?
b) Find the reduced echelon form of the matrix

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 1 \\
2 & 1 & 3 & 2
\end{array}\right]
$$

and find a parametrization of the straight line which is the intersection of the two planes given by the equations

$$
\begin{aligned}
x+2 y-3 z & =1 \\
2 x+y+3 z & =2 .
\end{aligned}
$$

Problem 2 Find all numbers z in the complex plane such that $z^{3}=1-\sqrt{3} i$. Write the solution(s) on polar form and illustrate these on a figure.

Problem 3 Let $T_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ and $T_{B}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be two linear transformations with standard matrices equal to respectively

$$
A=\left[\begin{array}{rr}
1 & -3 \\
0 & 5 \\
0 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rrr}
1 & -2 & 4 \\
-2 & 4 & -8
\end{array}\right] .
$$

a) Calculate $T_{A}(x, y)$ and $T_{B}(x, y, z)$. What is $T_{A}(4,-5)$?
b) Decide whether T_{A} is one-to-one (injective). Find the standard matrix of the composition of the two transformations that maps \mathbb{R}^{2} to \mathbb{R}^{2}. Decide whether or not this transformation is invertible.

Problem 4

a) Let the matrix A be given as $A=\left[\begin{array}{cc}11 & 5 \sqrt{3} \\ 5 \sqrt{3} & 1\end{array}\right]$. Show that A has eigenvalues equal to -4 and 16 .
b) Find an orthogonal matrix P and a diagonal matrix D such that $P^{-1} A P=D$ where A is the matrix given in a).
Let P be the standard matrix for the linear transformation $T_{P}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. What is the geometric interpretation of this linear transformation?
c) Consider the conic section $11 x^{2}+10 \sqrt{3} x y+y^{2}=25$.

Introduce a new coordinate system such that the equation for the conic section is expressed in standard form. Sketch the conic section in the $x y$-coordinate system, but the position of the new coordinate system should be clearly marked.

Problem 5

a) Let $A=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$ where a, b and c are arbitrary real numbers. Show that A has only real eigenvalues.
b) Let B be an $(n \times n)$-matrix (n a positive integer). Assume that the real number λ is an eigenvalue for B. Show that λ^{2} is an eigenvalue for B^{2}. Give a counterexample that shows that the opposite implication is not generally true (in other words λ^{2} an eigenvalue for B^{2} does not always imply that $\pm \lambda$ is an eigenvalue for B).
(Hint: Find a (2×2)-matrix with a known geometric interpretation.)

