# Norwegian University of Science and Technology Department of Mathematical Sciences

Page 1 of 2



Contact during the exam: Eldar Straume (Telephone 735 96683)

# EXAM IN MA1201 LINEAR ALGEBRA AND GEOMETRY

# Monday 3rd December 2007 Time: kl. 09.00 - 13.00 Permitted aids: No permitted aids. English

All answers must be justified. All problems will count the same when grading the exam.

Grades: 21st December 2007.

## Problem 1

a) We consider the following system of equations

where  $\alpha$  and  $\beta$  are constants. For what values of  $\alpha$  and  $\beta$  does the system of equations have

(i) no solutions (ii) infinite number of solutions (iii) exactly one solution?

b) Find the reduced echelon form of the matrix

$$A = \begin{bmatrix} 1 & 2 & -3 & 1 \\ 2 & 1 & 3 & 2 \end{bmatrix}$$

and find a parametrization of the straight line which is the intersection of the two planes given by the equations

**Problem 2** Find all numbers z in the complex plane such that  $z^3 = 1 - \sqrt{3}i$ . Write the solution(s) on polar form and illustrate these on a figure.

**Problem 3** Let  $T_A \colon \mathbb{R}^2 \to \mathbb{R}^3$  and  $T_B \colon \mathbb{R}^3 \to \mathbb{R}^2$  be two linear transformations with standard matrices equal to respectively

$$A = \begin{bmatrix} 1 & -3 \\ 0 & 5 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & -2 & 4 \\ -2 & 4 & -8 \end{bmatrix}.$$

- **a)** Calculate  $T_A(x, y)$  and  $T_B(x, y, z)$ . What is  $T_A(4, -5)$ ?
- b) Decide whether  $T_A$  is one-to-one (injective). Find the standard matrix of the composition of the two transformations that maps  $\mathbb{R}^2$  to  $\mathbb{R}^2$ . Decide whether or not this transformation is invertible.

### Problem 4

- a) Let the matrix A be given as  $A = \begin{bmatrix} 11 & 5\sqrt{3} \\ 5\sqrt{3} & 1 \end{bmatrix}$ . Show that A has eigenvalues equal to -4 and 16.
- b) Find an orthogonal matrix P and a diagonal matrix D such that  $P^{-1}AP = D$  where A is the matrix given in **a**).

Let P be the standard matrix for the linear transformation  $T_P \colon \mathbb{R}^2 \to \mathbb{R}^2$ . What is the geometric interpretation of this linear transformation?

c) Consider the conic section  $11x^2 + 10\sqrt{3}xy + y^2 = 25$ .

Introduce a new coordinate system such that the equation for the conic section is expressed in standard form. Sketch the conic section in the xy-coordinate system, but the position of the new coordinate system should be clearly marked.

### Problem 5

- a) Let  $A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$  where a, b and c are arbitrary real numbers. Show that A has only real eigenvalues.
- **b)** Let *B* be an  $(n \times n)$ -matrix (*n* a positive integer). Assume that the real number  $\lambda$  is an eigenvalue for *B*. Show that  $\lambda^2$  is an eigenvalue for  $B^2$ . Give a counterexample that shows that the opposite implication is not generally true (in other words  $\lambda^2$  an eigenvalue for  $B^2$  does not always imply that  $\pm \lambda$  is an eigenvalue for *B*).

(Hint: Find a  $(2 \times 2)$ -matrix with a known geometric interpretation.)