Norwegian University of Science and Technology
Departement of Mathematical Sciences

\author{

TMA4110

 Calculus 3 Autumn 2010

 Exercise set 9 - Week 43}

Edwards \& Penney, section 4.2

$11,19,25$

Edwards \& Penney, section 4.3

$5,13,18$

Exam problems

A-46 Let $V \subset \mathbb{R}^{4}$ be the space of solutions of the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}=0
$$

Find a basis for V, and determine its dimension.

TMA4110, Autumn 2003

4 For this exercise, we are going to study the matrix

$$
A=\left[\begin{array}{lll}
a & 2 & 1 \\
1 & a & 0 \\
1 & 0 & 1
\end{array}\right]
$$

a) For which values of the constant a is the matrix A invertible?
b) For which values of t does the system

$$
\begin{aligned}
2 x+2 y+z & =1+t \\
x+2 y & =2+t \\
x+z & =3+t
\end{aligned}
$$

have a solution?
c) Find a basis for the null space of the matrix $\left[\begin{array}{ccc}-1 & 2 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & 1\end{array}\right]$.

Multiple-choice questions

1 Which of the following equations define a subspace of \mathbb{R}^{2} ?
A: $x-y=1$
B: $x+y=0$
C: $x y=0$
D: $x^{2}+y^{2}=1$

2 For which value(s) of c are the vectors $\mathbf{v}_{1}=(1,3,-3), \mathbf{v}_{2}=(-2,4,1), \mathbf{v}_{3}=(-1,1, c)$ linearly independent?
A: no value of c
B: $c=1$
C: $c \neq 1$
D: all values of c

