Edwards \& Penney, section 1.4
$\mathbf{9 , 2 0 , 3 4 , 3 9 , 4 0}$

Edwards \& Penney, section 1.5

$17,22,32$

Exam problems

A-22 In a certain city, there are four one-way streets crossing each other as in the figure. You will also see indicated the number of cars that pass each hour.

Show that $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ satisfies a (linear) system of equations of the form

$$
A \mathbf{x}=\mathbf{b}
$$

and solve it. What is x_{1}, x_{2} and x_{3} if $x_{4}=200 ?$

A-23 Each year, in the city of Patos, 30% of the married women are divorced, and 20% of the unmarried ones get married. At present, there are 8000 married women and 2000 unmarried women. Suppose that the total number of women remain constant. According to local laws, a woman can only marry or divorce once a year.
Show how the number of married and unmarried women after n years determine the number of married and unmarried women after $(n+1)$ years. Use this to calculate how many married and unmarried women there are after 1, 2 and 3 years, respectively.

Multiple-choice questions

1 Find $A B$, given the 2×2-matrices $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 1 \\ -1 & 1\end{array}\right]$.
$\mathbf{A}:\left[\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right]$
B: $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$
$\mathbf{C}:\left[\begin{array}{cc}3 & 2 \\ 0 & -1\end{array}\right]$
D: $\left[\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right]$

2 For what value of the constant c is the 2×2-matrix $\left[\begin{array}{cc}-1 & 1 \\ c & 2\end{array}\right]$ not invertible?
$\mathbf{A}: c=0$
B: $c=-2$
$\mathbf{C}: c=2$
D: $c=-1 / 2$

