Problem 1. (1o points)
For each of the following statements, decide whether it is true or false. If a statement is false, provide a counterexample (you need not provide proofs of true statements).
a) Every Cauchy sequence in a complete metric space converges.
b) Assume that U is a Banach space and that $F: U \rightarrow U$ is such that $\|F(u)-F(v)\| \leq\|u-v\|$ for all $u, v \in U$. Then F has a fixed point in U.
c) The range of a linear transformation $T: U \rightarrow V$ between vector spaces U and V is a subspace of V.
d) Let U be a vector space and let $T: U \rightarrow U$ be bounded linear and surjective. Then T is invertible.

Problem 2. (1o points)
Define the following notions:
a) Assume that $\left(U,\|\cdot\|_{U}\right)$ is a normed space. Define the notion of an open set in U.
b) Let $\left(U,\|\cdot\|_{U}\right)$ and $\left(V,\|\cdot\|_{V}\right)$ be normed spaces. Define the notion of a bounded linear mapping from U to V.
c) Let X be a non-empty set. Define the notion of a metric on X.
d) Let (X, d) be a metric space. Define the notion of a Cauchy sequence in X.

Problem 3. (1o points)
Define

$$
A=\left(\begin{array}{cccc}
3 & 0 & 6 & -6 \\
0 & -2 & 4 & 4
\end{array}\right) \quad \text { and } \quad b=\binom{9}{6} .
$$

a) Find the singular value decomposition of the matrix A.
b) Find $x \in \mathbb{R}^{4}$ with $A x=b$ such that $\|x\|_{2}$ is minimal.

Problem 4. (10 points)
Assume that $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is a linear transformation with minimal polynomial

$$
p(z)=(z-2) z(z+2)(z+5) .
$$

Find the minimal polynomial of T^{2}.

Problem 5. (1o points)
Assume that $F: \mathbb{R} \rightarrow \mathbb{R}$ is a contraction and that $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and satisfies

$$
\int_{-\infty}^{\infty}|g(x)| d x \leq 1
$$

Define the mapping $T: C([0,1]) \rightarrow C([0,1])$,

$$
T u(x)=\int_{0}^{1} g(x-y) F(u(y)) d y \quad \text { for } x \in[0,1] .
$$

Show that there exists a unique function $u \in C([0,1])$ such that

$$
u(x)=T u(x) \quad \text { for all } x \in[0,1] .
$$

You may assume without proof that $T u \in C([0,1])$ for all $u \in C([0,1])$.

Problem 6. (1o points)
Let $\left(U,\|\cdot\|_{U}\right)$ and $\left(V,\|\cdot\|_{V}\right)$ be normed spaces and let $T: U \rightarrow V$ be a bounded linear mapping. Show that T is continuous.

Problem 7. (1o points)

Consider the mapping $T: \ell^{2} \rightarrow \ell^{2}$ given by

$$
(T x)_{n}= \begin{cases}2 x_{1}-x_{2} & \text { if } n=1 \\ 2 x_{n}-x_{n-1}-x_{n+1} & \text { if } n \geq 2\end{cases}
$$

for $x=\left(x_{1}, x_{2}, \ldots\right) \in \ell^{2}$.
a) Show that $T: \ell^{2} \rightarrow \ell^{2}$ is a bounded linear operator.
b) Find the adjoint T^{*} of T.

Problem 8. (1o points)
Assume that U is a Hilbert space over the real numbers \mathbb{R}. Recall that the space $L(U, U)$ of bounded linear operators $T: U \rightarrow U$ is a Banach space with the norm

$$
\|T\|_{L(U, U)}=\sup _{\|u\|_{U} \leq 1}\|T u\|_{U} .
$$

Denote now by

$$
\mathcal{S}:=\{T \in L(U, U): T \text { is self-adjoint }\}
$$

the set of self-adjoint bounded linear operators $T: U \rightarrow U$.
Show that \mathcal{S} is a closed subspace of $\left(L(U, U),\|\cdot\|_{L(U, U)}\right)$.

