Problem 1. (10 points)

For each of the following statements, decide whether it is true or false. If a statement is false, provide a counterexample (you need not provide proofs of true statements).

- a) Every Cauchy sequence in a complete metric space converges.
- b) Assume that *U* is a Banach space and that $F: U \to U$ is such that $||F(u) F(v)|| \le ||u v||$ for all $u, v \in U$. Then *F* has a fixed point in *U*.
- c) The range of a linear transformation $T: U \rightarrow V$ between vector spaces U and V is a subspace of V.
- d) Let U be a vector space and let $T: U \rightarrow U$ be bounded linear and surjective. Then T is invertible.

Problem 2. (10 points)

Define the following notions:

- a) Assume that $(U, \|\cdot\|_U)$ is a normed space. Define the notion of an *open set* in *U*.
- b) Let $(U, \|\cdot\|_U)$ and $(V, \|\cdot\|_V)$ be normed spaces. Define the notion of a *bounded linear mapping* from U to V.
- c) Let *X* be a non-empty set. Define the notion of a metric on *X*.
- d) Let (X, d) be a metric space. Define the notion of a Cauchy sequence in *X*.

Problem 3. (10 points)

Define

$$A = \begin{pmatrix} 3 & 0 & 6 & -6 \\ 0 & -2 & 4 & 4 \end{pmatrix}$$
 and $b = \begin{pmatrix} 9 \\ 6 \end{pmatrix}$.

- a) Find the singular value decomposition of the matrix *A*.
- b) Find $x \in \mathbb{R}^4$ with Ax = b such that $||x||_2$ is minimal.

Problem 4. (10 points)

Assume that $T: \mathbb{C}^n \to \mathbb{C}^n$ is a linear transformation with minimal polynomial

$$p(z) = (z-2)z(z+2)(z+5).$$

Find the minimal polynomial of T^2 .

Problem 5. (10 points)

Assume that $F \colon \mathbb{R} \to \mathbb{R}$ is a contraction and that $g \colon \mathbb{R} \to \mathbb{R}$ is continuous and satisfies

$$\int_{-\infty}^{\infty} |g(x)| \, dx \le 1.$$

Define the mapping $T: C([0,1]) \rightarrow C([0,1])$,

$$Tu(x) = \int_0^1 g(x-y)F(u(y)) \, dy \qquad \text{for } x \in [0,1].$$

Show that there exists a unique function $u \in C([0, 1])$ such that

$$u(x) = Tu(x)$$
 for all $x \in [0, 1]$.

You may assume without proof that $Tu \in C([0,1])$ *for all* $u \in C([0,1])$ *.*

Problem 6. (10 points)

Let $(U, \|\cdot\|_U)$ and $(V, \|\cdot\|_V)$ be normed spaces and let $T: U \to V$ be a bounded linear mapping. Show that *T* is continuous.

Problem 7. (10 points)

Consider the mapping $T: \ell^2 \to \ell^2$ given by

$$(Tx)_n = \begin{cases} 2x_1 - x_2 & \text{if } n = 1, \\ 2x_n - x_{n-1} - x_{n+1} & \text{if } n \ge 2, \end{cases}$$

for $x = (x_1, x_2, ...) \in \ell^2$.

- a) Show that $T: \ell^2 \to \ell^2$ is a bounded linear operator.
- b) Find the adjoint T^* of T.

Linear Methods, December 04, 2023

Problem 8. (10 points)

Assume that *U* is a Hilbert space over the real numbers \mathbb{R} . Recall that the space L(U, U) of bounded linear operators $T: U \to U$ is a Banach space with the norm

$$||T||_{L(U,U)} = \sup_{||u||_U \le 1} ||Tu||_U.$$

Denote now by

 $\mathcal{S} \coloneqq \left\{ T \in L(U, U) : T \text{ is self-adjoint } \right\}$

the set of self-adjoint bounded linear operators $T\colon U\to U.$

Show that S is a closed subspace of $(L(U, U), \|\cdot\|_{L(U,U)})$.