
SELECTED TOPICS IN LINEAR ALGEBRA

In this note, we discuss certain aspects of bounded linear operators between
finite-dimensional normed spaces X and Y . We begin by establishing the funda-
mental fact that B(X,Y ) ∼= Mm×n(C) if X and Y are complex vector spaces of
dimensions n and m, respectively. We then go on to discuss spectral theory for lin-
ear operators between finite-dimensional vector spaces, and finally consider certain
useful matrix decompositions.

1. Bounded linear transformations between finite-dimensional spaces

We have seen that any finite-dimensional vector space X of dimension n has
a set of n linearly independent spanning vectors {x1, . . . , xn}. We call this set a
(Hamel) basis for X, and any other basis must necessarily have the same number
of spanning vectors. As a consequence, we have the following.

Theorem 1. Let X be a complex vector space with basis {e1, . . . en}. Then
X is isomorphic to Cn,

X ∼= Cn.
Similarly, if X is a real vector space of dimension n, then X ∼= Rn.

Proof. Let X be a complex vector space. By the definition of a basis, any x ∈ X
has a unique representation

x =

n∑
j=1

ajej , aj ∈ C.

Let T : X → Cn be the mapping defined by

Tx = (a1, a2, . . . , an).

T is linear : if x =
∑
ajej and y =

∑
bjej , then

T (αx+βy) = (αa1+βb1, . . . , αan+βbn) = α(a1, . . . , an)+β(b1, . . . , bn) = αTx+βTy.

T is surjective:

for any (a1, . . . , an) ∈ Cn there exists x =

n∑
j=1

ajej such that Tx = (a1, . . . , an).

T is injective:

Tx = Ty ⇔ aj = bj for each j = 1, 2, . . . , n ⇒ x = y.

Thus, T is a vector space isomorphism. The same proof works when X is a real
vector space. �

Now let T : X → Y be a linear operator between finite-dimensional vector spaces
X and Y . We make the useful observation that T is determined by its action on
any basis of X.
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Lemma 2. Let X be a finite-dimensional vector space with basis {e1, . . . , en}.
For any values y1, . . . , yn ∈ Y there exists precisely one linear transformation
T : X → Y such that

Tej = yj , j = 1, . . . , n.

Proof. Any x ∈ X has a unique representation x =
∑n
j=1 xjej . Define T as

Tx =

n∑
j=1

xjyj .

Then Tej = yj , and T is clearly linear (since it acts as matrix multiplication with a
(1× n) matrix). Finally, T is also unique: If S : X → Y is a linear map satisfying
Sej = yj , then

Sx = S

 n∑
j=1

xjej

 =

n∑
j=1

xjSej =

n∑
j=1

xjyj = Tx for all x ∈ X,

so S = T . �

Example 3. Let T : Cn → Cm be the linear map given by matrix multiplication

Tx = Ax, A ∈Mm×n(C).

Then the columns Aj of the matrix A are determined by the action on the standard
basis {ej}nj=1:

Aej = Aj , j = 1, . . . , n.

Note that Aj plays the role of yj in the above lemma.

Remark 1. If X and Y are both finite-dimensional normed spaces, then any
linear transformation T : X → Y is automatically bounded. We therefore use
B(X,Y ) to denote the linear transformations from X to Y when X and Y are
finite-dimensional, even though we originally introduced the notation for bounded
linear transformations.

We are now equipped to clarify the link between matrices and linear transforma-
tions. We have already seen that an (m×n) matrix A defines a linear transformation
from Cn to Cm by matrix multiplication. On the other hand, any linear transfor-
mation between finite-dimensional vector spaces can be represented in matrix form
once we have chosen bases for X and Y .

Theorem 4. Let X and Y be complex vector spaces of dimension n and m,
respectively. Then B(X,Y ) ∼=Mm×n(C). Similarly, if X and Y are real vector
spaces, then B(X,Y ) ∼=Mm×n(R).

Proof. Since X ∼= Cn and Y ∼= Cm, it suffices to prove the statement for these
choices of X and Y . Let {ej}nj=1 be the standard basis for Cn. Then

T :


x1
x2
...
xn

→

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



x1
x2
...
xn


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is a linear transformation Cn → Cm satisfying

Tej =


a1j
a2j
...

amj

 .
According to Lemma 2, there is precisely one such T ∈ B(Cn,Cm). As we can
choose the columns Aj of A to be any elements Aj ∈ Cm, we get all possible
T ∈ B(Cn,Cm). �

Example 5. The differential operator d
dx is a linear operator on Pn(R). Since

P2(R) ∼= R3 via the vector space isomorphism

2∑
j=0

ajx
j → (a0, a1, a2),

we see that

d

dx
:

0 1 0
0 0 2
0 0 0

a0a1
a2

 =

 a12a2
0


expresses the derivation

d

dx
(a0 + a1x+ a2x

2) = a1 + 2a2x+ 0x2.

Notice that in the proof of Theorem 4, the matrix representation of T depends on
the choice of basis of the space X; in particular, we use the standard basis {ej}nj=1

for X ∼= Cn. However, we may equally well choose a different basis {fj}nj=1. Let
us see how this affects the matrix representation of T .

We focus on the case when X = Y = Cn. For any x ∈ X, we have that

x =

n∑
j=1

αjej =

n∑
j=1

βjfj

for unique scalars α1, . . . , αn and β1, . . . , βn. Let us now denote by xe the vector∑n
j=1 αjej = (α1, . . . , αn)>, by xf the vector

∑n
j=1 βjej = (β1, . . . , βn)>, and by

F the (n×n) matrix whose columns are the basis vectors f1, . . . , fn. We then have
fj = Fej , and

xe = x =
∑

βjfj =
∑

βjFej = F
(∑

βjej

)
= F (xf ).

The matrix F is invertible, so we have

xe = Fxf and xf = F−1xe.

Now let T : Cn → Cn, and suppose Ae is the matrix representation of T in the
standard basis {ej}. What is then its matrix representation Af in the basis {fj}?
Defining ye and yf as above, we have that

ye = Aexe ⇔ yf = F−1ye = F−1Aexe = F−1AeFxf .

Thus,

Af = F−1AeF

is the matrix representation of T in the basis {fj}.
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Recall that the kernel of a linear operator T : X → Y ,

ker(T ) = {x ∈ X : Tx = 0} ,

is a vector subspace of X, whereas the range of T ,

ran(T ) = {y ∈ Y : Tx = y for some x ∈ X} ,

is a vector subspace of Y . When X and Y are finite-dimensional, and T is repre-
sented by a matrix A ∈Mm×n(C), then these subspaces are equivalently given by
the so-called null space and column space of the matrix A:

• Null space of A: The kernel of T represented by A is clearly equal to the
null space of A. We have

x ∈ ker(T ) ⇔ Ax = 0 ⇔
n∑
j=1

aijxj = 0 ∀i = 1, . . .m

⇔ (x1, . . . , xn) ⊥ (ai1, . . . , ain) ∀i = 1, . . .m.

Note that the final line above tells us that the kernel of T (or null space of
A) is the space of vectors x ∈ Cn orthogonal to the conjugated row vectors
of A. We call the dimension of this subspace the nullity of T .
• Column space of A: The column space of A is the range of T . Since

Tx = Ax = A1x1 + · · ·+Anxn,

where Aj = (a1j , . . . , amj)
> is the jth column vector of A, we have that

ran(T ) = {Ax : x ∈ Cn} = span{A1, . . . , An}.

This is precisely the column space of A. We call the dimension of this
subspace the rank of T .
• Row space of A: The row space of A is the space spanned by the row

vectors of A. Note that

row space of A = column space of A>,

where A> is the transpose of A. The following result follows almost imme-
diately.

Proposition 6. Let A ∈Mm×n(C). Then

ker(A) ⊥ ran(A
>

).

In words, the kernel of A is orthogonal to the range of A
>

.

Proof. We have just seen that the kernel, or null space, of A is orthogonal to the

row space of A. This is in turn equal to the column space, or range, of A
>

. �

Finally let us state the rank-nullity theorem and see some important consequences.

Theorem 7. Let T ∈ B(Cn,Cm). Then

dim ker(T ) + dim ran(T ) = n.
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Proof. Pick a basis {e1, . . . , ek} for kerT . If k = n and ker(T ) = Cn, we are done,
since then ran(T ) = {0}, and

dim ker(T ) + dim ran(T ) = n+ 0 = n.

Now assume k < n, and extend {e1, . . . , ek} to a basis {e1, . . . , ek, f1, . . . , fl}
for Cn. This can be done in the following way: pick f1 /∈ span{e1, . . . , ek}. Then
{e1, . . . , ek, f1} is linearly independent. If this set of vectors spans all of Cn, we
stop. If not, we pick f2 /∈ span{e1, . . . , ek, f1}. This process will necessarily stop
when k + l = n (because any linearly independent set of vectors spanning Cn has
precisely n elements).

To finish the proof, we prove that Tf = {Tf1, . . . , T fl} is a basis for ran(T ). We
observe first that Tf is linearly independent:

l∑
j=1

ajTfj = T

 l∑
j=1

ajfj

 = 0 ⇔
l∑

j=1

ajfj ∈ kerT

⇔ aj = 0 for j = 1, 2, . . . , l.

The last implication follows from the fact that by construction, no nonzero linear
combination of vectors fj lies in ker(T ). Now let us see that Tf spans ran(T ). By
the linearity of T we have

ran(T ) = {Tx : x ∈ Cn} =

T(
k∑
j=1

ajej +

l∑
j=1

bjfj

)
: aj , bj ∈ C


=

T(
k∑
j=1

ajej

)
+ T

( l∑
j=1

bjfj

)
: aj , bj ∈ C


=


l∑

j=1

bjTfj : bj ∈ C

 .

Hence {Tf1, . . . , T fl} is a basis for ran(T ), and

dim ker(T ) + dim ran(T ) = k + l = n.

�

An immediate consequence of the rank-nullity theorem is that a linear map T :
Cn → Cn is injective if and only if it is surjective.

Corollary 8. Let T ∈ B(Cn,Cn). Then the following are equivalent.

i) T is injective (ker(T ) = {0}).

ii) T is surjective (ran(T ) = Cn).

iii) T is invertible.

iv) The matrix representation A of T (in any given basis) is invertible.

v) For any b ∈ Cn, the system Ax = b has a unique solution.
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2. Eigenvalues and eigenvectors

In the next section, we will discuss similarity transformations between matri-
ces and establish Schur’s triangulation lemma. This requires that we recall some
properties of eigenvalues and eigenvectors.

Definition 2. Let T : X → X be a linear transformation (for example,
T : Cn → Cn given by a matrix A). Then the scalar λ ∈ C is called an
eigenvalue of T if there exists a nonzero vector v ∈ X such that

Tv = λv.

The vector v is called an eigenvector corresponding to the eigenvalue λ.

Definition 3. Let T : X → X be a linear transformation. The set σ(T ) of
scalars satisfying

σ(T ) = {z ∈ C : T − zI is not invertible}
is called the spectrum of T .

Proposition 9. For a linear transformation represented by A ∈Mn×n(C),

σ(A) = {λ ∈ C : det(A− λI) = 0}
consists of the roots (λ1, . . . , λn) of the characteristic polynomial pA(λ) =
det(A− λI); these are precisely the eigenvalues of A.

Proof. Exercise. �

We recall the following notions related to eigenvalues of a matrix A ∈Mn×n(C):

• The multiplicity of a root λ of pA(λ) is the algebraic multiplicity of the
eigenvalue λ.

• The eigenvectors corresponding to an eigenvalue λ span a subspace of Cn,

ker(A− λI),

called the eigenspace of λ. The dimension of this space is the geometric
multiplicity of λ.

Definition 4. Suppose that the matrix A ∈Mn×n(C) has n linearly indepen-
dent eigenvectors. If these eigenvectors are the columns of a matrix S, then
S−1AS is a diagonal matrix Λ with the eigenvalues of A on its diagonal:

S−1AS = Λ =


λ1

λ2
. . .

λn

 .
This is called the diagonalization of A.
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Note that the definition above is a simple consequence of the fact that if A has eigen-
vectors λ1, . . . , λn with associated, and linearly independent, eigenvectors v1, . . . , vn,
then we may rewrite the set of equations

Av1 = λ1v1

...

Avn = λnvn

in matrix form AS = SΛ, where S is the matrix with column vectors v1, . . . vn.
Since the vectors vj are linearly independent, the matrix S is invertible.

Remark 5. i) If the eigenvectors v1, . . . , vk correspond to different eigenval-
ues λ1, . . . , λk, then they are automatically linearly independent. Therefore
any (n× n) matrix with n distinct eigenvalues can be diagonalized.

ii) The diagonalization is not unique, as any eigenvector vj can be multiplied
by a constant and remains an eigenvector. Repeated eigenvalues leave even
more freedom. For the trivial example A = I, any invertible S will do,
since S−1IS = I is diagonal.

iii) Not all matrices possess n linearly independent eigenvectors, so not all
matrices are diagonalizable. The standard example of a “defective” matrix
is

A =

[
0 1
0 0

]
.

Exercise: Show that this matrix cannot be diagonalized.

Recall that a map T ∈ B(Cn) is called

i) normal if TT ∗ = T ∗T ,

ii) unitary if T ∗ = T−1, and

iii) self-adjoint or Hermitian if T = T ∗.

Let A ∈ Mn×n(C) be the matrix representation of T . We have seen that T ∗ has

matrix representation A
>

. Accordingly, we let A∗ = A
>

, and call the matrix A

i) normal if AA∗ = A∗A,

ii) unitary if A∗ = A−1, and

iii) Hermitian if A = A∗.

We make certain observations on the eigenvalues and eigenvectors of Hermitian and
unitary matrices.

Proposition 10. Let A ∈ Mn×n(C) be a Hermitian matrix. Then all eigen-
values of A are real, and any two eigenvectors corresponding to different eigen-
values are orthogonal.

Proof. Let λ be an eigenvalue of A, and v the corresponding eigenvector. Then

〈Av, v〉 = 〈v,A∗v〉 = 〈v,Av〉 ,
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and since the inner product is conjugate symmetric (〈x, y〉 = 〈y, x〉), it follows that
〈Av, v〉 is real-valued. On the other hand, we have

〈Av, v〉 = 〈λv, v〉 = λ‖v‖2,
and since both 〈Av, v〉 and ‖v‖2 are real, the eigenvalue λ must be real-valued.

Now let λ1 and λ2 be two distinct eigenvalues of A, with corresponding eigen-
vectors x and y:

Ax = λ1x and Ay = λ2y.

Then

λ1 〈x, y〉 = 〈Ax, y〉 = 〈x,A∗y〉 = 〈x,Ay〉 = λ2 〈x, y〉 ,

and it follows that we must have 〈x, y〉 = 0, meaning x ⊥ y. �

Proposition 11. Let A ∈ Mn×n(C) be a unitary matrix. Then every eigen-
value of A has absolute value |λ| = 1. Moreover, eigenvectors corresponding
to different eigenvalues are orthogonal.

Proof. Let λ be an eigenvalue of A and v the corresponding eigenvector. Then

〈Av,Av〉 =
〈
v,A−1Av

〉
= 〈v, v〉 = ‖v‖2.

On the other hand

〈Av,Av〉 = 〈λv, λv〉 = |λ|2‖v‖2,
and it follows that |λ| = 1.

Now let λ1 and λ2 be two distinct eigenvalues of A, with corresponding eigen-
vectors x and y:

Ax = λ1x and Ay = λ2y.

Then

〈x, y〉 = 〈Ax,Ay〉 = λ1λ2 〈x, y〉 ,
which implies that either λ1λ2 = 1 or 〈x, y〉 = 0. Multiplying both sides of the first
equality by λ2, we get

λ1|λ2|2 = λ1 = λ2.

This is a contradiction, as the two eigenvalues λ1 and λ2 are distinct. Thus the
condition λ1λ2 = 1 cannot hold, and we conclude that 〈x, y〉 = 0. �

3. Similarity transformations and Schur’s lemma

We saw in the previous section that if a matrix A ∈ Mn×n(C) has n linearly
independent eigenvectors, then it has a diagonalization Λ = S−1AS, where the ma-
trix S has the eigenvectors of A as its columns. Let us now look at all combinations
M−1AM formed with an invertible matrix M on the right and its inverse on the
left.

Definition 6. We say that the matrices A and B in Mn×n(C) are similar if
there exists an invertible matrix M such that

B = M−1AM.

The matrix M provides a similarity transformation from A to B. If M can be
chosen unitary, then we say that A and B are unitarily equivalent.
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At first glance it might not be obvious why we would be interested in similarity
transforms, but the general idea is that a matrix B similar to A shares many
properties with A, yet B might have a much more useful form than A.
Example 12. Similarity transformations arise in systems of differential equations,
when a “change of variables” u = Mv introduces the new unknown v:

du

dt
= Au becomes M

dv

dt
= AMv, or

dv

dt
= M−1AMv.

The new matrix in the equation is M−1AM . In the special case that M is the
eigenvector matrix S, the system becomes completely uncoupled, because Λ =
S−1AS is diagonal. This is a maximal simplification, but other M ’s can also be
useful. We try to make M−1AM easier to work with than A.

Note also that the similar matrix B = M−1AM is closely connected to A if we
go back to linear transformations. Recall the key idea: Every linear transformation
is represented by a matrix. However, this matrix depends on the choice of basis.
If we recall our observations on page 91, we see that if we change the basis from
e = {e1, . . . , en} to Me, then we change the matrix from A to B.

We will try to shed light on the following two questions:

(1) What do similar matrices M−1AM have in common?

(2) By picking M in a clever way, can we ensure that M−1AM has a special
form?

Our first observation is that similar matrices have the same eigenvalues.

Lemma 13. If B = M−1AM , then A and B have the same eigenvalues.

Proof. We consider the characteristic polynomial of B:

pB(z) = det(M−1AM − zI) = det(M−1AM −M−1Mz)

= det(M−1) det(AM − zM) = det(M−1) det(A− zI) det(M) = pA(z)

It follows that A and B must have the same eigenvalues. �

Let us now focus on question (2) above. We restrict our attention to the case
where M = U is unitary (meaning U∗ = U−1, which necessarily implies that U has
orthonormal columns). Unless the eigenvectors of A are orthogonal, it is impossible
for U−1AU to be diagonal. However, Schur’s lemma states the very useful fact that
U−1AU can always achieve a triangular form.

Theorem 14 (Schur’s triangulation lemma). For any A ∈ Mn×n(C) there
exists a unitary matrix U such that

U−1AU = U∗AU = T,

where T is an upper triangular matrix, and where the eigenvalues of A appear
(with multiplicity) along the diagonal of T .
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We recall that an upper triangular matrix is one with only zeros below its diagonal:

T =


a11 a12 · · · a1n

0 a22
...

...
. . .

0 · · · 0 ann


Proof of Theorem 14. We proceed by induction on n ≥ 1. For n = 1 there is
nothing to do. Suppose now that the result is true for matrices up to size n − 1
(n ≥ 2). Let A ∈ Mn×n(C) with eigenvalues λ1, . . . , λn (counting multiplicities).
Consider an eigenvector v1 associated to λ1, and assume that ‖v1‖ = 1. We use
it to form an orthonormal basis (v1, . . . , vn), and we let V be the unitary matrix
with vj as its columns. The matrix A is equivalent to the matrix of the linear map
x→ Ax relative to the basis V , i.e.

(1) A = V


λ1 ∗ · · · ∗
0
... Ã
0

V −1 =: V T̃V −1,

The matrices A and T̃ are similar, so they have the same eigenvalues. We see
that pA(z) = (λ1− z)pÃ(z), so the eigenvalues of the matrix Ã must be λ2, . . . , λn.

By the induction hypothesis there exists an (n − 1) × (n − 1) unitary matrix W̃
such that

Ã = W̃


λ2 ∗ · · · ∗

0
. . .

...
... ∗
0 · · · 0 λn

 W̃−1.
By a tedious calculation it is not difficult to check that if we let

W :=


1 0 · · · 0
0
... W̃
0

 ,
then

W−1T̃W =


λ1 ∗ · · · ∗

0
. . .

...
... ∗
0 · · · 0 λn

 =: T.

It follows that T̃ = WTW−1, and inserting this in equation (1), we get

A = VWTW−1V −1 = (VW )T (VW )−1.

Finally, we observe that W and V are both unitary, so VW is also unitary, and the
matrix T is of the desired form. �

As an immediate consequence of Schur’s lemma, we have the following.
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Corollary 15 (Spectral theorem for Hermitian matrices). Let A ∈Mn×n(C)
be Hermitian. Then A can be diagonalized, meaning there exists a diagonal
matrix Λ (with the eigenvalues of A on the diagonal) and a unitary matrix U
such that

A = UΛU−1 = UΛU∗.

Proof. By Schur’s lemma there exists a unitary matrix U and a triangular matrix
T such that

A = UTU∗.

If A is Hermitian, then A = A∗, and it follows that

A = A∗ = (UTU∗)∗ = UT ∗U∗.

This means T must also be Hermitian in addition to triangular, which forces T to
be diagonal. �

The corollary above is known as the spectral theorem for Hermitian matrices. How-
ever, we will see in the following section that this result can be extended to all
normal matrices.

4. The spectral theorem

We have seen that a Hermitian matrix A ∈Mn×n(C) can be diagonalized. This
is a sufficient, but not a necessary, condition for diagonalization. The following
theorem, known as the Spectral Theorem, tells us precisely which matrices can be
diagonalized.

Theorem 16 (Spectral Theorem). Let A ∈Mn×n(C). Then A is diagonaliz-
able, meaning there exists a diagonal matrix Λ (with the eigenvalues of A on
the diagonal) and a unitary matrix U such that

A = UΛU−1 = UΛU∗,

if and only if A is normal (meaning AA∗ = A∗A).

Before proving Theorem 16, we establish the following preliminary result.

Lemma 17. An upper triangular matrix is normal if and only if it is diagonal.

Proof. (⇒) : Suppose T is an upper triangular matrix. Then the (n, n)-th entry

of TT ∗ is |tnn|2, while the (n, n)-th entry of T ∗T is |tnn|2 +
∑n−1
i=1 |tin|2. If T is

normal, then these two entries have to be the same. Hence tin = 0 for i = 1, ..., n−1.
Repeating this argument for the entries (n− 1, n− 1), ...(2, 2), (1, 1) gives that T is
diagonal.
(⇐) : If T is diagonal, then T is certainly normal. �

Proof of Theorem 16. By Schur’s lemma, there exists a unitary matrix U and an
upper triangular matrix T such that

U∗AU = U−1AU = T.
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We observe that the matrix T is normal if A is normal, since

TT ∗ = (U∗AU)(U∗AU)∗ = U∗AUU∗A∗U = U∗AA∗U

= U∗A∗AU = U∗A∗UU∗AU = T ∗T,

and similarly A is normal if T is normal. Finally, by Lemma 17, T is normal if and
only if it is diagonal. We know from Schur’s lemma that we must have

T = Λ,

where Λ is the matrix with the eigenvalues of A on its diagonal. Finally, we observe
that it follows from

AU = UΛ

that the columns of U must be the (orthonormal) eigenvectors of A. �

5. Singular value decomposition and applications

Let A ∈Mm×n(C). If m 6= n, it no longer makes sense to ask if A can be diag-
onalized. However, one can raise the question of whether there exist two different
unitary matrices U and V such that

A = UΣV ∗,

and where Σ is a diagonal (but rectangular) matrix. It turns out that the answer
to this question is yes, and that the specific factorization, known as the singular
value decomposition, is closely related to the diagonalization of the normal matrix
AA∗ (or similarly A∗A). Before we state the singular value decomposition in detail
and prove its existence, let us briefly discuss positive definite matrices.

Definition 7. A self-adjoint matrix A ∈Mn×n(C) is said to be positive defi-
nite if

〈Ax, x〉 > 0, for all nonzero x ∈ Cn.
Similarly, if A satisfies the weaker condition

〈Ax, x〉 ≥ 0, for all nonzero x ∈ Cn,
the A is said to be positive semi-definite.

A useful test for positive definiteness (or semi-definiteness) is to consider the eigen-
values of the matrix in question.

Proposition 18. A self-adjoint matrix A ∈ Mn×n(C) is positive definite if
and only if all its eigenvalues are positive. Similarly, A is positive semi-definite
if and only if all its eigenvalues are non-negative.

Proof. (⇐): Suppose A is positive definite. Then

〈Ax, x〉 > 0 for all nonzero x ∈ Cn.

In particular, this holds for any eigenvector of A. Let x be an eigenvector associated
to the eigenvalue λ. We have

〈Ax, x〉 = 〈λx, x〉 = λ‖x‖2 > 0,

and it follows that λ > 0.
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(⇒): By the Spectral Theorem, there exists a unitary matrix U such that

A = U∗ΛU,

and where Λ is a diagonal matrix with the positive eigenvalues of A on its diagonal.
It follows that

〈Ax, x〉 = 〈U∗ΛUx, x〉 = 〈ΛUx,Ux〉 .
Now let y := Ux ∈ Cn. We then have

〈Ax, x〉 = 〈Λy, y〉 = λ1|y1|2 + · · ·λn|yn|2,
which is greater than zero for all nonzero y ∈ Cn. Finally note that y = 0 if and
only if x = 0. �

An important pair of self-adjoint, positive semi-definite matrices is AA∗ and A∗A
for any given A ∈Mm×n(C). The following result follows almost immediately from
the proposition above.

Corollary 19. Let A ∈ Mm×n(C). Then the (n × n) matrix A∗A and the
(m ×m) matrix AA∗ are self-adjoint with non-negative eigenvalues, and the
positive eigenvalues of the two matrices coincide.

For the proof of Corollary 19 we need the following lemma, which we state without
proof.

Lemma 20. For any A ∈ Mm×n(C) and B ∈ Mn×m(C), the matrices AB
and BA have the same non-zero eigenvalues.

Proof of Corollary 19. It is clear that AA∗ and A∗A are both self-adjoint. More-
over, we have that

‖Ax‖2 = 〈Ax,Ax〉 = 〈A∗Ax, x〉 ≥ 0,

so A∗A is clearly positive semi-definite. Running the same argument with ‖A∗x‖
shows that also AA∗ is positive semi-definite. By Proposition 18, the eigenvalues
of both matrices are non-negative, and by the preceeding lemma it finally follows
that the positive eigenvalues of the two matrices coincide. �

Let us now return to the so-called singular value decomposition of a matrix.

Definition 8. Let A ∈ Mm×n(C) have rank r. Let σ2
1 ≥ · · · ≥ σ2

r be the
positive eigenvalues of A∗A. The scalars σ1, . . . , σr are called the positive
singular values of A.

Since the matrix A∗A is of size n × n, it has n eigenvalues. Those that are not
positive are necessarily equal to zero, and accordingly the matrix A has n − r
singular values σj = 0, j = r+ 1, . . . , n. As we have just established that AA∗ and
A∗A have the same nonzero eigenvalues, one may choose either one for determining
the positive singular values of A.

Theorem 21 (Singular Value Decomposition). Suppose A ∈ Mm×n(C) is of
rank r, and let σ1 ≥ · · · ≥ σr be the positive singular values of A. Let Σ be
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the (m× n) matrix defined by

Σij =

{
σi if i = j ≤ r
0 otherwise.

Then there exists an (m×m) unitary matrix U and an (n×n) unitary matrix
V such that

A = UΣV ∗.

Through the proof of Theorem 21 below, we will see that the columns of V are the
(orthonormal) eigenvectors of A∗A.

Proof. The matrix A∗A is self-adjoint with positive eigenvalues σ2
1 ≥ · · · ≥ σ2

r and
(n − r) eigenvalues equal to zero. Thus, by the Spectral Theorem, there exists an
(n× n) unitary matrix V such that

(2) V ∗A∗AV = (AV )∗(AV ) = D,

where D = Σ∗Σ is the (n× n) diagonal matrix with

Dii = σ2
i , i = 1, . . . , r,

and zeros elsewhere. It is clear from (2) that the (i, j)th entry of V ∗A∗AV is the
inner product of columns i and j in AV . Thus, the columns (AV )j of AV are
pairwise orthogonal. Moreover, for 1 ≤ j ≤ r, the length of (AV )j is σj . Let
Ur denote the (m × r) matrix with (AV )j/σj as its jth column. Complete Ur to
an (m ×m) unitary matrix U by finding an orthonormal basis for the orthogonal
complement of (the column space of) Ur, and using these basis vectors as the last
(m− r) columns in U . We then have

AV = UΣ ⇔ A = UΣV ∗.

�

Remark 9. Since only the first r diagonal entries of Σ are nonzero, we see that
the last (m − r) columns of U , and likewise the last (n − r) columns of V , are
superfluous. As a consequence, we have that a given matrix A has an SVD where
the diagonal matrix Σ is uniquely determined, but the unitary matrices U and V
are not.

Example 22. Let us determine the singular value decomposition of

A =

[
3 2 2
2 3 −2

]
.

The procedure for finding the SVD is as follows: We begin by determining the
positive eigenvalues of A∗A (or similarly AA∗). We have

A∗A =

3 2
2 3
2 −2

[3 2 2
2 3 −2

]
=

13 12 2
12 13 −2
2 −2 8


The positive eigenvalues of this matrix are σ2

1 = 25 and σ2
2 = 9. The last eigenvalue

is σ2
3 = 0. Since A∗A is self-adjoint (or Hermitian), the eigenvectors corresponding

to σ2
1 , σ2

2 and σ2
3 are necessarily orthogonal. We find these eigenvectors, and choose

them to have length 1:

σ2
1 = 25:
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A∗A− 25I =

13− 25 12 2
12 13− 25 −2
2 −2 8− 25

 ∼
0 0 0

0 0 1
1 −1 − 17

2

 ,
and solving for A∗A−25I = 0, we find that v1 =


√
2
2√
2
2
0

 is a normalized eigenvector.

σ2
2 = 9:

A∗A− 9I =

13− 9 12 2
12 13− 9 −2
2 −2 8− 9

 ∼
0 0 0

0 1 1
4

1 0 − 1
4

 ,
and solving forA∗A−9I = 0, we find that v2 =


√
2
6

−
√
2
6

2
√
2

3

 is a normalized eigenvector.

σ2
3 = 0:

A∗A =

13 12 2
12 13 −2
2 −2 8

 ∼
0 0 0

0 1 −2
1 0 2

 ,
and solving for A∗A = 0, we find that v3 =

 2
3
− 2

3
− 1

3

 is a normalized eigenvector.

We can now “build” all the matrices that enter into the SVD of the matrix A.
We get

V =
[
v1|v2|v3

]
=


√
2
2

√
2
6

2
3√

2
2 −

√
2
6 − 2

3

0 2
√
2

3 − 1
3

 ,
and

Σ =

[
σ1 0 0
0 σ2 0

]
=

[
5 0 0
0 3 0

]
.

Finally, we find that

U =
[
U1|U2

]
=
[
Av1
‖Av1‖ |

Av2
‖Av2‖

]
=

[√
2
2

√
2
2√

2
2 −

√
2
2

]
.

With these choices of U , Σ and V , we have that A = UΣV ∗, or explicitly written
out:

A =

[
3 2 2
2 3 −2

]
=

[√
2
2

√
2
2√

2
2 −

√
2
2

] [
5 0 0
0 3 0

]
√
2
2

√
2
2 0√

2
6 −

√
2
6

2
√
2

3
2
3 − 2

3 − 1
3

 .
Let us now discuss some consequences and applications of the SVD Theorem.



16 SELECTED TOPICS IN LINEAR ALGEBRA

Proposition 23. Let A ∈Mm×n(C) have positive singular values σ1 ≥ · · · ≥
σr. Then the operator norm of A (that is, the norm of the bounded linear
operator associated with A) is

‖A‖ = σ1.

Proof. Let A = UΣV ∗ be the singular value decomposition of A, and let v1 be
the first column vector of V . The vector v1 has length 1, and from the equation
AV = UΣ it is clear that ‖Av1‖ = σ1. It follows that

‖A‖ = sup
‖x‖=1

‖Ax‖ ≥ σ1.

Now let x ∈ Cn be any vector of length 1, and consider the equation Ax =
UΣV ∗x. Since V ∗ is unitary, it represents an isometry, and it follows that ‖V ∗x‖ =
1. Let us denote this vector by y := V ∗x. Moreover, we note that Σy is the vector
where the jth component of y is multiplied by σj . Thus, we have ‖Σy‖ ≤ σ1‖y‖.
Finally, since U is also unitary, we have

‖Ax‖ = ‖UΣy‖ = ‖Σy‖ ≤ σ1‖y‖ = σ1,

and it follows that ‖A‖ ≤ σ1. We thus conclude that ‖A‖ = σ1. �

Let us now see that the SVD of a matrix can be used to obtain so-called polar
decompositions. A polar decomposition factors a square matrix in a manner anal-
ogous to the factoring of a complex number as the product of a complex number
of length 1 and a nonnegative number (z = |z|e2πiϕ). In the case of matrices, the
complex number of length 1 is replaced by a unitary matrix, and the nonnegative
number is replaced by a positive semi-definite matrix.

Theorem 24 (Polar decomposition). For any square matrix A, there exists a
unitary matrix W and a positive semi-definite matrix P such that

A = WP.

Proof. By the singular value decomposition theorem, there exist unitary matrices
U and V and a diagonal matrix Σ with nonnegative diagonal entries such that
A = UΣV ∗. It follows that

A = UΣV ∗ = UV ∗V ΣV ∗ = WP,

where W = UV ∗ and P = V ΣV ∗. Since W is the product of unitary matrices, W
is unitary. Moreover, since Σ is positive semi-definite, so is the matrix P . �

Example 25. To find the polar decomposition of

A =

[
11 −5
−2 10

]
,

we begin by finding the SVD of A = UΣV ∗. It can be shown that

v1 =
1√
2

(
1
−1

)
and v2 =

1√
2

(
1
1

)
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are orthonormal eigenvectors of A∗A with corresponding eigenvalues σ2
1 = 200 and

σ2
2 = 50. Thus, we have

V =

[
1√
2

1√
2

−1√
2

1√
2

]
and Σ =

[
σ1 0
0 σ2

]
=

[
10
√

2 0

0 5
√

2

]
.

Next, we find the columns of U :

u1 =
1

σ1
Av1 =

1

5

(
4
−3

)
and u2 =

1

σ2
Av2 =

1

5

(
3
4

)
.

Thus,

U =

[
4
5

3
5−3

5
4
5

]
.

Therefore, in the notation of the polar decomposition theorem, we have

W = UV ∗ =

[
4
5

3
5−3

5
4
5

][ 1√
2

−1√
2

1√
2

1√
2

]
=

1

5
√

2

[
7 −1
1 7

]
,

and

P = V ΣV ∗ =

[
1√
2

1√
2

−1√
2

1√
2

] [
10
√

2 0

0 5
√

2

][ 1√
2

−1√
2

1√
2

1√
2

]
=

5√
2

[
3 −1
−1 3

]
.

Finally, let us illustrate one possible application of SVD’s to image processing.
Example 26. Suppose a satellite takes a picture, and wants to send it to earth.
The picture may contain 1000 × 1000 pixels - a million little squares each with a
definite color. We can code the colors, and send back 1000000 numbers. However,
it is more convenient if we can find the essential information, and send only this.

Suppose we know the SVD, and specifically the matrix of singular values Σ.
Typically, some of the σ’s are significant, whereas others are extremely small. If
we keep, say, 20 singular values, and discard the remaining 980, then we need only
send the corresponding 20 columns of U and V . Thus, if only 20 singular values
are kept, we send 20 × 2000 numbers rather than a million (and this is a 25 to 1
compression).

There is, of course, the additional cost of computing the SVD. This has become
quite efficient, but is still expensive for big matrices.

6. The pseudoinverse

Let V and W be finite-dimensional inner product spaces over the same field F,
and let T : V → W be a linear transformation. It is desirable to have a linear
transformation from W to V which captures some of the essence of an inverse of T
even if T is not invertible. A simple (but fruitful) approach to this problem is to
focus on the “part” of T that is invertible, namely the restriction of T to ker(T )⊥.
Let L : ker(T )⊥ → ran(T ) be the linear transformation defined by L(x) = T (x) for
all x ∈ ker(T )⊥. Then L is invertible, and we can use the inverse of L to construct a
linear transformation from W to V which restores some of the benefits of an inverse
of T .

Definition 10. Let V and W be finite-dimensional inner product spaces over
the same field, and let T : V → W be a linear transformation. Let L :
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ker(T )⊥ → ran(T ) be the linear transformation defined by L(x) = T (x) for all
x ∈ ker(T )⊥. The pseudoinverse of T , denoted T+, is defined as the unique
linear transformation from W to V such that

T+(y) =

{
L−1(y) for y ∈ ran(T )

0 for y ∈ ran(T )⊥
.

The pseudoinverse of a linear transformation T on a finite-dimensional inner prod-
uct space exists even if T is not invertible. Furthermore, if T is invertible, then
T+ = T−1, because ker(T )⊥ = V and L coincides with T .

Now let A ∈Mm×n(C) be the matrix representation of the linear map T . Then
there exists a unique (n × m) matrix B which represents the pseudoinverse T+.
We call B the pseudoinverse of A and denote it by B = A+. It turns out that the
pseudoinverse A+ can be computed with the aid of the singular value decomposition
of A.

Theorem 27. Let A ∈ Mm×n(C) have rank r and singular value decompo-
sition A = UΣV ∗, where σ1 ≥ · · · ≥ σr are the positive singular values of A.
Let Σ+ be the (n×m) matrix

Σ+
ij =

{
1
σi

if i = j ≤ r
0 otherwise

.

Then A+ = V Σ+U∗.

We state this result without proof, and focus on its applications.
Let b ∈ Cm, and consider the system of linear equations

Ax = b.

We know that this system has either no solution, a unique solution, or infinitely
many solutions. It has a unique solution for every b ∈ Cm if and only if A is
invertible, in which case the solution is given by A−1b. Moreover, if A is invertible,
then A−1 = A+, so we could have written the solution as x = A+b. If, on the
other hand, the system Ax = b is underdetermined or inconsistent, then A+b still
exists. This raises the question: How is the vector A+b related to the system of
linear equations Ax = b? In order to answer this question, we need the following
lemma.

Lemma 28. Let V and W be finite-dimensional inner product spaces, and let
T : V →W be linear. Then

i) T+T is the orthogonal projection of V on ker(T )⊥.

ii) TT+ is the orthogonal projection of W on ran(T ).

Proof. As above, we define L : ker(T )⊥ → ran(T ) by L(x) = T (x) for x ∈ ker(T )⊥.
If x ∈ ker(T )⊥, then

T+T (x) = L−1L(x) = x,

and if x ∈ ker(T ), then

T+T (x) = T+(0) = 0.
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Consequently, T+T is the orthogonal projection of V on ker(T )⊥. This proves part
i). Part ii) is proved similarly. �

Theorem 29. Consider the system of linear equations Ax = b, where A ∈
Mm×n(C) and b ∈ Cm. If z = A+b, then z has the following properties.

i) If Ax = b is consistent, then z is the unique solution to the system
having minimum norm. That is, z is a solution to the system, and if
y is any other solution to the system, then ‖y‖ > ‖z‖.

ii) If Ax = b is inconsistent, then z is the unique best approximation to
a solution having minimum norm. That is

‖Az − b‖ ≤ ‖Ay − b‖ for any y ∈ Cn,
with equality if and only if Ay = Az. Moreover, if Ay = Az, then
‖z‖ ≤ ‖y‖ with equality if and only if z = y.

Proof. Let T be the linear map associated to the matrix A

i) Suppose that Ax = b is consistent, and let z = A+b. Observe that b ∈
ran(T ), and therefore

Az = AA+b = TT+b = b,

by Lemma 28ii). Thus, z is a solution to the system Ax = b. Now let y be
any solution to the system. Then

T+Ty = A+Ay = A+b = z.

Thus, z is the orthogonal projection of y on ker(T )⊥. By the projection
theorem, we have y = z + v with v ∈ ker(T ), and ‖y‖2 = ‖z‖2 + ‖v‖2. It
follows that ‖y‖ > ‖z‖ unless v = 0 and y = z.

ii) Suppose that Ax = b is inconsistent. By Lemma 28ii), we have that

Az = AA+b = TT+b

is the orthogonal projection of b on ran(T ). Therefore, by the projection
theorem, Az is the vector in ran(T ) nearest b. If Ay is any other vector in
ran(T ), then necessarily

‖Az − b‖ ≤ ‖Ay − b‖,

with equality if and only if Az = Ay. Finally, suppose that y is any vector
in Cn such that Az = Ay = c. Then

A+c = A+Az = A+AA+b = A+b = z,

where we have used that A+AA+ = A+ (this is easily checked by writing
out the SVD of A). Hence, we may apply part i) of this theorem to the
system Ax = c to conclude that ‖y‖ ≥ ‖z‖ with equality if and only if
y = z.

�

Example 30. Let us find the minimal norm solution of

−x1 + 2x2 + 2x3 = b, for b ∈ R.
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According to Theorem 29i), this is given by

z = A+b,

where A+ is the pseudoinverse of the (1× 3) matrix A =
[
−1 2 2

]
. The SVD of

A is A = UΣV ∗, where

U =
[
1
]

, Σ =
[
3 0 0

]
, V =


− 1

3
2√
5

2
3
√
5

2
3 0

√
5
3

2
3

1√
5
− 4

3
√
5

 .
The pseudoinverse of A is thus given by

A+ = V Σ+U∗ =


− 1

3
2√
5

2
3
√
5

2
3 0

√
5
3

2
3

1√
5
− 4

3
√
5




1
3

0
0

 [1] =


− 1

9

2
9

2
9 ,


and it follows that the minimal norm solution of Ax = b is

z = A+b =


− 1

9

2
9

2
9 ,

 b.
Any other solution of the system Ax = b is necessarily of the form

y = A+b+ v, v ∈ ker(A).


