

TMA4145 Linear Methods Fall 2020

Exercise set 6

Please justify your answers! Note that *how* you arrive at an answer is more important than the answer itself.

- **a**) Determine if the following expressions are norms on \mathbb{R}^3 :
 - i) $f(x_1, x_2, x_3) = |x_1| + |x_2|;$
 - ii) $f(x_1, x_2, x_3) = |x_1| + (|x_2|^2 + |x_3|^2)^{1/2}.$
 - **b)** Show that if $\|\cdot\|$ is a norm on the scalar field \mathbb{F} , then there exists a positive number $\lambda > 0$ such that $\|x\| = \lambda |x|$ for all $x \in \mathbb{F}$.
 - c) Let X be a vector space and let $\|\cdot\|_a$ and $\|\cdot\|_b$ be norms on X. Show that

$$||x|| := \left(||x||_a^2 + ||x||_b^2 \right)^{1/2}$$

defines a norm on X.

- 2 For fixed indices $1 \le p < q \le \infty$, prove the following statements:
 - a) $\ell^p \subseteq \ell^q$.
 - **b)** $||x||_q \leq ||x||_p$ for every $x \in \ell^p$. Hint: Consider first sequences x with $||x||_{\infty} = 1$.
- **3** Find a sequence $x = (x_1, x_2, ...)$ of real numbers which converges to 0, but which is not in any space $\ell^p(\mathbb{R}), 1 \leq p < \infty$.
- 4 Given a normed space $(X, \|\cdot\|)$, prove that the function $\rho: X \to \mathbb{R}$ defined by $\rho(x) = \|x\|$ is continuous on X. Note that, as a consequence, we have

$$x_n \to x \quad \Rightarrow \quad \|x_n\| \to \|x\|.$$

5 Let X be a normed space. Given a *subspace* M of X, prove the following statements:

- **a)** The closure \overline{M} of M is also a subspace of X.
- **b)** If $M \neq X$, then the interior of M is empty $(M^{\circ} = \emptyset)$.
- **6** Show that if $f \in C(\mathbb{R})$ is uniformly continuous and for each $n \in \mathbb{N}$ we set $f_n(t) = f(t \frac{1}{n})$, then $f_n \to f$ in $C(\mathbb{R})$. Show by example that this can fail if $f \in C(\mathbb{R})$ is not uniformly continuous.