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Exercise set 13

Please justify your answers! Note that how you arrive at an answer is more important
than the answer itself.

1 Let T be a linear operator on the space of polynomials P2 of degree at most 2
defined by Tf(x) = −f(x)− f ′(x).

a) Find the matrix representation of T with respect to the basis 1, x, x2 of
P2 and its characteristic polynomial.

b) Find the eigenvalue(s) and eigenvector(s) of T .

2 Let A ∈ Mm×n(C) and B ∈ Mn×m(C), and let λ ∈ C be any nonzero scalar.
Show that λ is an eigenvalue of AB if and only if λ is an eigenvalue of BA.

3 Let A ∈Mn×n(C) be a normal matrix. Prove that

det(A) =
n∏

j=1
λj,

where the λj’s are the (not necessarily distinct) eigenvalues of A.

4 (Exam 2017, Problem 1a)
a) Find the singular value decomposition for the matrix

A =
[
1 1 −1
1 1 −1

]
.

b) The linear system

x1 + x2 − x3 = 1
x1 + x2 − x3 = 1

has infinitely many solutions. Find the solution with minimal Euclidean
norm ‖·‖2.
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c) The linear system

x1 + x2 − x3 = 1
x1 + x2 − x3 = 2

is inconsistent, and has no solution. Find the unique best approximation
to a solution having minimum norm.

d) Prove that an (n × n) matrix A of full rank has a polar decomposition
using the singular value decomposition of A. Hence, show that there exists
an (n×n) unitary matrixW and a positive definite (not just semi-definite)
(n× n) matrix P such that A = WP .
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