Please justify your answers! Note that how you arrive at an answer is more important than the answer itself.

1 Let T be a linear operator on the space of polynomials \mathcal{P}_{2} of degree at most 2 defined by $T f(x)=-f(x)-f^{\prime}(x)$.
a) Find the matrix representation of T with respect to the basis $1, x, x^{2}$ of \mathcal{P}_{2} and its characteristic polynomial.
b) Find the eigenvalue(s) and eigenvector(s) of T.

2 Let $A \in \mathcal{M}_{m \times n}(\mathbb{C})$ and $B \in \mathcal{M}_{n \times m}(\mathbb{C})$, and let $\lambda \in \mathbb{C}$ be any nonzero scalar. Show that λ is an eigenvalue of $A B$ if and only if λ is an eigenvalue of $B A$.

3 Let $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ be a normal matrix. Prove that

$$
\operatorname{det}(A)=\prod_{j=1}^{n} \lambda_{j}
$$

where the λ_{j} 's are the (not necessarily distinct) eigenvalues of A.

4 (Exam 2017, Problem 1a)
a) Find the singular value decomposition for the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & -1 \\
1 & 1 & -1
\end{array}\right]
$$

b) The linear system

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3}=1 \\
& x_{1}+x_{2}-x_{3}=1
\end{aligned}
$$

has infinitely many solutions. Find the solution with minimal Euclidean norm $\|\cdot\|_{2}$.
c) The linear system

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3}=1 \\
& x_{1}+x_{2}-x_{3}=2
\end{aligned}
$$

is inconsistent, and has no solution. Find the unique best approximation to a solution having minimum norm.
d) Prove that an $(n \times n)$ matrix A of full rank has a polar decomposition using the singular value decomposition of A. Hence, show that there exists an $(n \times n)$ unitary matrix W and a positive definite (not just semi-definite) $(n \times n)$ matrix P such that $A=W P$.

