Please justify your answers! Note that how you arrive at an answer is more important than the answer itself.

1 Which of the following transformations are linear?
a) $T: P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ defined by $T(p)(x)=x p(x)+p^{\prime}(x)$, where $P_{n}(\mathbb{R})$ denotes the vector space of real-valued polynomials of degree at most n.
b) $T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ defined by $T\left(z_{1}, z_{2}\right)=\left(\overline{z_{1}}, \overline{z_{2}}\right)$, where \mathbb{C}^{2} is a vector space over \mathbb{R}.
Does the conclusion change if \mathbb{C}^{2} is considered as a vector space over \mathbb{C} ? Explain.
c) Let $M_{n \times n}(\mathbb{R})$ denote the space of all $n \times n$ matrices with real entries.
i) $T: M_{n \times n}(\mathbb{R}) \rightarrow M_{n \times n}(\mathbb{R}), T(A)=A^{2}$.
ii) $T: M_{n \times n}(\mathbb{R}) \rightarrow \mathbb{R}, T(A)=\operatorname{det} A$.

2 Given normed spaces X and Y, and a bounded and linear operator $A: X \rightarrow Y$, prove that $\operatorname{ker}(A)$ is a closed subspace of X. See Problem 5 for an example that range (A) need not be closed in Y.

3 Let T be the integral operator

$$
T f(x)=\int_{0}^{1} k(x, y) f(y) d y
$$

defined by a kernel $k \in C([0,1] \times[0,1])$ such that $k(x, y) \geq 0$ for any $(x, y) \in$ $[0,1] \times[0,1]$. Show that the operator norm of T as a mapping on $C[0,1]$ with respect to $\|\cdot\|_{\infty}$-norm is

$$
\|T\|=\max _{x \in[0,1]} \int_{0}^{1}|k(x, y)| d y .
$$

4 Let M be a closed subspace of a Hilbert space H, and let P be the orthogonal projection of H onto M. Prove that P is bounded and linear, and find $\|P\|$. Is P isometric?

5 Define an operator $B: \ell^{1} \rightarrow \ell^{1}$ by

$$
B x=\left(\frac{x_{k}}{k}\right)_{k \in \mathbb{N}}=\left(x_{1}, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \ldots\right), \quad x=\left(x_{k}\right)_{k \in \mathbb{N}} \in \ell^{1} .
$$

a) Show that B is bounded and linear, and $\|B\|=1$.
b) Show that B is injective, but not surjective.
c) Prove that range (B) is a proper dense subspace of ℓ^{1}, but it is not closed.

