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Exercise set 10

Please justify your answers! Note that how you arrive at an answer is more important
than the answer itself.

1 Which of the following transformations are linear?
a) T : P2(R) → P3(R) defined by T (p)(x) = xp(x) + p′(x), where Pn(R)

denotes the vector space of real-valued polynomials of degree at most n.
b) T : C2 → C2 defined by T (z1, z2) = (z1, z2), where C2 is a vector space

over R.
Does the conclusion change if C2 is considered as a vector space over C?
Explain.

c) Let Mn×n(R) denote the space of all n× n matrices with real entries.
i) T : Mn×n(R)→Mn×n(R), T (A) = A2.
ii) T : Mn×n(R)→ R, T (A) = det A.

2 Given normed spaces X and Y , and a bounded and linear operator A : X → Y ,
prove that ker(A) is a closed subspace of X. See Problem 5 for an example
that range(A) need not be closed in Y .

3 Let T be the integral operator

Tf(x) =
∫ 1

0
k(x, y)f(y)dy,

defined by a kernel k ∈ C([0, 1]× [0, 1]) such that k(x, y) ≥ 0 for any (x, y) ∈
[0, 1]× [0, 1]. Show that the operator norm of T as a mapping on C[0, 1] with
respect to ‖.‖∞-norm is

‖T‖ = max
x∈[0,1]

∫ 1

0
|k(x, y)|dy.

4 Let M be a closed subspace of a Hilbert space H, and let P be the orthogonal
projection of H onto M . Prove that P is bounded and linear, and find ‖P‖. Is
P isometric?
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5 Define an operator B : `1 → `1 by

Bx =
(

xk

k

)
k∈N

=
(

x1,
x2

2 ,
x3

3 , . . .
)

, x = (xk)k∈N ∈ `1.

a) Show that B is bounded and linear, and ‖B‖ = 1.

b) Show that B is injective, but not surjective.

c) Prove that range(B) is a proper dense subspace of `1, but it is not closed.

October 14, 2020 Page 2 of 2


