TMA4145 Linear Methods Fall 2020

Norwegian University of Science
Exercise set 1 and Technology
Department of Mathematical
Sciences

Please justify your answers! The most important part is how you arrive at an answer, not the answer itself.

1 Let X, Y and Z be sets.
a) Show that $X \cap(Y \cup Z)=(X \cap Y) \cup(X \cap Z)$.
b) Show that $X \backslash(Y \cup Z)=(X \backslash Y) \cap(X \backslash Z)$.

2 Let $f: X \rightarrow Y$ be a function, let B be a subset of Y, and let $\left\{B_{i}\right\}_{i \in I}$ be a family of subsets of Y.
a) Prove that

$$
f^{-1}\left(\bigcap_{i \in I} B_{i}\right)=\bigcap_{i \in I} f^{-1}\left(B_{i}\right)
$$

b) Prove that $f\left(f^{-1}(B)\right) \subseteq B$, and if f is surjective then equality holds. Show by example that equality need not hold if f is not surjective.

3 Let $f: X \rightarrow Y$ be a function, let A be a subset of X, and let $\left\{A_{i}\right\}_{i \in I}$ be a family of subsets of X.
a) Prove that

$$
f\left(\bigcup_{i \in I} A_{i}\right)=\bigcup_{i \in I} f\left(A_{i}\right)
$$

b) Prove that $A \subseteq f^{-1}(f(A))$, and if f is injective then equality holds. Show by example that equality need not hold if f is not injective.

4 Show that the sets \mathbb{Z} of integers and \mathbb{Q} of rational numbers are countable.

5 Show that the Cartesian product of two (infinite) countable sets is countable.

6 (Challenge) Prove that the closed interval $[0,1]$ and the open interval $(0,1)$ have the same cardinality by finding a bijection $f:[0,1] \rightarrow(0,1)$. Hint: Do not try to create a continuous function f.

