Brief solutions to Assignment 1

Chapter 1

Exercise 1:

a) Use the quadratic formulas.

$$
(1-i)^{2}=1^{2}+i^{2}-2 i=1-1-2 i=-2 i
$$

b) (HINT: Use that $w \cdot \bar{w}=|w|^{2}$.)

We start by computing the denominator of the fraction

$$
2-i+\overline{3+2 i}=2-i+3-2 i=5-3 i
$$

Now using the above hint we get that

$$
\begin{aligned}
\frac{1+3 i}{2-i+\overline{3+2 i}} & =\frac{1+3 i}{5-3 i} \\
& =\frac{(1+3 i)(5+3 i)}{(5-3 i)(5+3 i)} \\
& =\frac{(1+3 i)(5+3 i)}{5^{2}+3^{2}} \\
& =\frac{5+3 i+15 i-9}{34} \\
& =\frac{-4+18 i}{34} \\
& =\frac{-2}{17}+\frac{9}{17} i
\end{aligned}
$$

c) Use that $i^{4}=\left(i^{2}\right)^{2}=(-1)^{2}=1$ and that $\frac{1}{i}=-i$ since $i \cdot(-i)=-i^{2}=1$.

$$
\frac{1}{i^{5}}=\frac{1}{i^{4} \cdot i}=\frac{1}{i}=-i
$$

Exercise 2:

a)

$$
-1+\overline{2+3 i}=1-3 i=\sqrt{1^{2}+(-3)^{2}} e^{\arctan (-3)}
$$

Remember that the formular for the argument depends on which quadrant we are in.

PS $\arctan (-3) \simeq-1.24904577$ in radians. However, answering with the expression should be completely acceptable.
b) Compute the polarform of

$$
\frac{1+\sqrt{3} i}{1-\sqrt{3} i}
$$

and use the multiplication rules for polarforms.

First

$$
\left\|\frac{1+\sqrt{3} i}{1-\sqrt{3} i}\right\|=1
$$

since the numerator and denominator are complex conjugate. Furthermore,

$$
\begin{aligned}
\arg \left(\frac{1+\sqrt{3} i}{1-\sqrt{3} i}\right) & =\arg (1+\sqrt{3} i)-\arg (1-\sqrt{3} i) \\
& =\arg (1+\sqrt{3} i)+\arg (1+\sqrt{3} i) \\
& =2 \cdot \frac{\pi}{3}
\end{aligned}
$$

since dividing by a complex number becomes subtraction when we take the argument. All in all we get

$$
\left\|\left(\frac{1+\sqrt{3} i}{1-\sqrt{3} i}\right)^{8}\right\|=1^{8}=1
$$

and

$$
\arg \left(\left(\frac{1+\sqrt{3} i}{1-\sqrt{3} i}\right)^{8}\right)=8 \cdot\left(\frac{2 \pi}{3}\right)
$$

so the polar form is

$$
e^{i(8 \cdot 2 \pi / 3)}=e^{i(4 \pi / 3)}
$$

by reducing the modulus.

Exercise 3: Use the fact the equation

$$
z^{n}=c
$$

has solutions

$$
\sqrt[n]{|c|} \cdot e^{i k \theta / n} \quad k \in\{0,1, \ldots, n\}
$$

With $\theta=\arg (c)$.

Exercise 4: Multiplication geometrically can be seen multiplying the lengths of the complex numbers and adding the angles. This can bee seen by the
computation

$$
\begin{aligned}
z w & =r e^{i \theta} s e^{i \alpha} \\
& =s r e^{i \theta} e^{i \alpha} \\
& =s r e^{i(\theta+\alpha)}
\end{aligned}
$$

Exercise 5: Write $z=a+b i$ where $a, b \in \mathbb{R}$, then $\bar{z}=a-b i$. From direct computation we get

$$
\begin{aligned}
1 / 2(z+\bar{z}) & =1 / 2(a+b i+a-b i) \\
& =1 / 2(a+a) \\
& =a .
\end{aligned}
$$

the other formula is done similarly.

Exercise 6:

a) Look at exercise 5 .
b) We have that

$$
z=\frac{-2 i \pm \sqrt{-4-4(-1-i)}}{-1-i}
$$

c) Look for the hidden quadratic equation. We have that

$$
\begin{aligned}
(z+1)^{4}=(z-1)^{4} & \Leftrightarrow\left(\frac{z+1}{z-1}\right)^{4}=1 \\
& \Leftrightarrow\left(\frac{z+1}{z-1}\right)^{2}= \pm 1
\end{aligned}
$$

Where the last holds since the complex solutions to the equations $w^{2}=1$ are exactly $w= \pm 1$. We now work case by case. For 1 : we have

$$
\left(\frac{z+1}{z-1}\right)^{2}=1
$$

if and only if $(z+1)^{2}=(z-1)^{2}$, that is if and only if $z^{2}+2 z+1=z^{2}-2 z+1$ which is equivalent to $2 z=-2 z$, that is if and only if $z=0$. For -1 : we get that the above is equivalent to $(z+1)^{2}=-(z-1)^{2}$. Which is to say, $z^{2}+2 z+1=-z^{2}+2 z-1$. Which is equivalent to $2 z^{2}=-2$ that is $z= \pm i$. So the solutions are $z \in\{0, i,-i\}$.

Exercise 7:

a) We use the hint. Given any polynomial P with real coefficents then $P(\bar{z})=\overline{P(z)}$.

$$
\begin{aligned}
P(\bar{z}) & :=\sum_{0}^{\operatorname{deg}(P)} a_{n} \bar{z}^{n} \\
& =\sum_{0}^{\operatorname{deg}(P)} a_{n} \overline{z^{n}} \\
& =\sum_{0}^{\operatorname{deg}(P)} \overline{a_{n} z^{n}} \\
& =\frac{\sum_{0}^{\operatorname{deg}(P)} a_{n} z^{n}}{} \\
& =\overline{P(z)}
\end{aligned}
$$

Here the first equality follows by the multiplicativity of taking the conjugate $(\overline{x \cdot y}=$ $\bar{x} \cdot \bar{y})$. The secound equality follows from the coeffiecent a_{n} being real hence their own complex conjugate and the multiplicativity of taking the conjugate. And the third equality follows from conjugation commuting with addition $(\overline{x+y}=\bar{x}+\bar{y})$.

Now the result follows since assuming $P(z)=0$ we have that $P(\bar{z})=\overline{P(z)}=\overline{0}=0$
b) By theorem 1.11 P must have three roots. i.e $P(z)=\prod_{i=1}^{3}\left(z-z_{i}\right)$. Remember that $\bar{z}=z$ if and only if z is real. If all roots of P are real then at least one of them are and we are done. Therefore assume not all roots of P are real. Pick a non-real root and denote it as z_{1}, by a) we now know that $\overline{z_{1}}$ is also a root and it is not equal to z_{1}. We choose to lable $z_{2}:=\overline{z_{1}}$. We know that d is real since P only has real coefficents. Furthermore $d=-z_{1} z_{2} z_{3}=-z_{1} \overline{z_{1}} z_{3}=-\left|z_{1}\right|^{2} z_{3}$. Since $-\left|z_{1}\right|^{2}$ is real and non-zero by our assumption that z_{1} was non-real we have that $\frac{d}{-\left|z_{1}\right|^{2}}$ is real and $\frac{d}{-\left|z_{1}\right|^{2}}=z_{3}$. Hence, if we assume that P has at least one non-real root, it must have one real root and if P has no non-real roots then all of its roots are real.

Exercise 8:

a) Start with $r_{1} \leftrightarrow r_{3}$ then work from top left down fixing a_{11}.
b) Same as above

Exercise 9: Note that the coefficient systems agree and perform row reduction on $\left[A \mid b_{1}, b_{2}\right]$.

Exercise 10: Row reduction gives us that
$\left[A \mid b_{1}, b_{2}\right] \sim\left(\begin{array}{cccc|cc}1 & 0 & 0 & -3 / 2 & -1 / 2 & -9 / 2 \\ 0 & 1 & 0 & 1 / 5 & 1 / 5 & 0 \\ 0 & 0 & 1 & 3 / 10 & 33 / 10 & 7 / 2\end{array}\right)$
so the claim is true.
Exercise 11:
a) Use row reduction.
b) Remember that you may multiply by complex numbers.

Exercise 12: They are both right. If you set $s^{\prime}=-s+3$ and $t^{\prime}=-t+4$ you see that one formula is just a linear shift of another formula. To see this, note that changing s is the only way to change the 2nd vector coordinate, and like wise varying t is the only way to change the 3 rd vector coordinate.

Exercise 13: Assuming that $b \neq 0$ we can apply row reduction to get

$$
\left(\begin{array}{ccc|c}
1 & 0 & 0 & -a c-c \frac{a}{b} \\
0 & 1 & 0 & c-\frac{c}{b} \\
0 & 0 & 1 & \frac{c}{b}
\end{array}\right)
$$

Hence if $b \neq 0$ there is one solution given as follows

$$
x_{1}=-a c-c \frac{a}{b}, x_{2}=c-\frac{c}{b}, x_{3}=\frac{c}{b}
$$

Assuming that $b=0$ we observe from the bottom row that if $c \neq 0$ there is no solution. Assuming that $c=0$ we now have to solve the following problem

$$
\left(\begin{array}{lll|l}
1 & a & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

We do row reduction to get

$$
\left(\begin{array}{ccc|c}
1 & 0 & -a & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

We now have on free variable. Letting $t=x_{2}$ we find that $x_{3}=-t$ and $x_{1}=-a t$.

