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TMA4110 Matematikk 3

Brief solutions to Assignment 1
Chapter 1

Exercise 1:

a) Use the quadratic formulas.

(1− i)2 = 12 + i2 − 2i = 1− 1− 2i = −2i

b) (HINT: Use that w · w̄= |w|2.)
We start by computing the denominator of the
fraction

2− i + 3+ 2i = 2− i + 3− 2i = 5− 3i.

Now using the above hint we get that

1+ 3i

2− i + 3+ 2i
=

1+ 3i
5− 3i

=
(1+ 3i)(5+ 3i)
(5− 3i)(5+ 3i)

=
(1+ 3i)(5+ 3i)

52 + 32

=
5+ 3i + 15i − 9

34

=
−4+ 18i

34

=
−2
17
+

9
17

i

c) Use that i4 = (i2)2 = (−1)2 = 1 and that 1
i = −i

since i · (−i) = −i2 = 1.

1
i5
=

1
i4 · i

=
1
i
= −i

Exercise 2:

a)

−1+ 2+ 3i = 1− 3i =
Æ

12 + (−3)2earctan(−3)

Remember that the formular for the argument
depends on which quadrant we are in.

PS arctan(−3) ≃ −1.24904577 in radians.
However, answering with the expression should
be completely acceptable.

b) Compute the polarform of

1+
p

3i

1−
p

3i

and use the multiplication rules for polarforms.

First








1+
p

3i

1−
p

3i









= 1

since the numerator and denominator are
complex conjugate. Furthermore,

arg

�

1+
p

3i

1−
p

3i

�

= arg(1+
p

3i)− arg(1−
p

3i)

= arg(1+
p

3i) + arg(1+
p

3i)

= 2 ·
π

3

since dividing by a complex number becomes
subtraction when we take the argument. All in
all we get










�

1+
p

3i

1−
p

3i

�8










= 18 = 1

and

arg

�

�

1+
p

3i

1−
p

3i

�8�

= 8 ·
�

2π
3

�

so the polar form is

ei(8·2π/3) = ei(4π/3)

by reducing the modulus.

Exercise 3: Use the fact the equation

zn = c

has solutions

n
Æ

|c| · eikθ/n k ∈ {0, 1, . . . , n}.

With θ = arg(c).

Exercise 4: Multiplication geometrically can be
seen multiplying the lengths of the complex numbers
and adding the angles. This can bee seen by the
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computation

zw= reiθ seiα

= sreiθ eiα

= srei(θ+α)

Exercise 5: Write z = a+ bi where a, b ∈ R, then
z̄ = a− bi. From direct computation we get

1/2(z + z̄) = 1/2(a+ bi + a− bi)

= 1/2(a+ a)

= a.

the other formula is done similarly.
Exercise 6:

a) Look at exercise 5.

b) We have that

z =
−2i ±
p

−4− 4(−1− i)
−1− i

.

c) Look for the hidden quadratic equation. We
have that

(z + 1)4 = (z − 1)4⇔
�

z + 1
z − 1

�4

= 1

⇔
�

z + 1
z − 1

�2

= ±1.

Where the last holds since the complex so-
lutions to the equations w2 = 1 are exactly
w = ±1. We now work case by case. For 1:
we have

�

z + 1
z − 1

�2

= 1

if and only if (z + 1)2 = (z − 1)2, that is if
and only if z2 + 2z + 1 = z2 − 2z + 1 which
is equivalent to 2z = −2z, that is if and only
if z = 0. For −1: we get that the above is
equivalent to (z + 1)2 = −(z − 1)2. Which is
to say, z2 + 2z + 1 = −z2 + 2z − 1. Which is
equivalent to 2z2 = −2 that is z = ±i. So the
solutions are z ∈ {0, i,−i}.

Exercise 7:

a) We use the hint. Given any polynomial P with
real coefficents then P(z) = P(z).

P(z) :=
deg(P)
∑

0

anzn

=
deg(P)
∑

0

anzn

=
deg(P)
∑

0

anzn

=
deg(P)
∑

0

anzn

= P(z)

Here the first equality follows by the multi-
plicativity of taking the conjugate (x · y =
x · y). The secound equality follows from
the coeffiecent an being real hence their own
complex conjugate and the multiplicativity of
taking the conjugate. And the third equality
follows from conjugation commuting with
addition (x + y = x + y).

Now the result follows since assuming P(z) = 0

we have that P(z) = P(z) = 0= 0

b) By theorem 1.11 P must have three roots. i.e
P(z) =
∏3

i=1(z − zi). Remember that z = z

if and only if z is real. If all roots of P are
real then at least one of them are and we
are done. Therefore assume not all roots of
P are real. Pick a non-real root and denote
it as z1, by a) we now know that z1 is also
a root and it is not equal to z1. We choose
to lable z2 := z1. We know that d is real
since P only has real coefficents. Furthermore
d = −z1z2z3 = −z1z1z3 = −|z1|2z3. Since −|z1|2

is real and non-zero by our assumption that
z1 was non-real we have that d

−|z1|2
is real and

d
−|z1|2

= z3. Hence, if we assume that P has at
least one non-real root, it must have one real
root and if P has no non-real roots then all of
its roots are real.

Chapter 2
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Exercise 8:

a) Start with r1 ↔ r3 then work from top left
down fixing a11.

b) Same as above

Exercise 9: Note that the coefficient systems
agree and perform row reduction on [A|b1, b2].

Exercise 10: Row reduction gives us that

[A|b1, b2]∼







1 0 0 −3/2 −1/2 −9/2

0 1 0 1/5 1/5 0

0 0 1 3/10 33/10 7/2







so the claim is true.
Exercise 11:

a) Use row reduction.

b) Remember that you may multiply by complex
numbers.

Exercise 12: They are both right. If you set
s′ = −s+ 3 and t ′ = −t + 4 you see that one formula
is just a linear shift of another formula. To see this,
note that changing s is the only way to change the
2nd vector coordinate, and like wise varying t is the
only way to change the 3rd vector coordinate.

Exercise 13: Assuming that b ̸= 0 we can apply
row reduction to get






1 0 0 −ac − c a
b

0 1 0 c − c
b

0 0 1 c
b







Hence if b ̸= 0 there is one solution given as follows

x1 = −ac − c
a
b

, x2 = c −
c
b

, x3 =
c
b

.
Assuming that b = 0 we observe from the bottom row
that if c ̸= 0 there is no solution. Assuming that c = 0

we now have to solve the following problem






1 a 0 0

0 1 1 0

0 0 0 0







We do row reduction to get






1 0 −a 0

0 1 1 0

0 0 0 0







We now have on free variable. Letting t = x2 we find
that x3 = −t and x1 = −at.


