EXTRA TASKS

1. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by

$$
T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right], T\left(\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right] \text { and } T\left(\left[\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right]\right)=\left[\begin{array}{l}
3 \\
1 \\
5
\end{array}\right]
$$

i. Find the standard matrix A corresponding to the transformation T.
ii. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ be the columns of A. Show that the columns of A form an orthogonal set and find the orthogonal projection of the vector $\mathbf{u}=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$ to $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{3}\right\}$.

$$
\begin{aligned}
& \text { SOLUTION } \\
& \text { i. The stardoral matrix } A \text { is given by } \\
& A=\left[\begin{array}{lll}
T\left(\vec{k}_{1}\right) & T\left(\xi_{2}\right) & T\left(\vec{l}_{3}\right)
\end{array}\right], \\
& \text { where } \vec{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \vec{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \text { an? } d \quad \vec{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \text {. } \\
& \tilde{T}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right], \quad \tilde{T}\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=? \\
& \text { - } \\
& \text { - } \tau\left(\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]\right)=T\left(-\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+2\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=-T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)+2 \tilde{T}\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right) & =\frac{1}{2} T\left(\left[\begin{array}{l}
-1 \\
2 \\
0
\end{array}\right]\right)+\frac{1}{2} T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right) \\
& =\frac{1}{2}\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]_{/ /} \\
\bullet \tilde{I}\left(\left[\begin{array}{l}
1 \\
3 \\
-1
\end{array}\right]\right) & =T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+3\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]-\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right) \\
& =T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)+3 T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)-T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right) \\
\Rightarrow T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right) & =T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)+3 T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)-T\left(\left[\begin{array}{l}
1 \\
3 \\
-1
\end{array}\right]\right) \\
& =\left[\begin{array}{l}
1 \\
-2 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
3 \\
1 \\
5
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
-1
\end{array}\right]
\end{aligned}
$$

So the standard matrix A is

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 1 & 0 \\
1 & 1 & -1 \\
\underset{\sim}{\vec{y}_{1}} & {\underset{\vec{V}}{2}}^{2} & \vec{V}_{3}
\end{array}\right]
$$

ii. Claim: $\left\{\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}\right\}$ is an orthogonal set.

We will show that

$$
\begin{aligned}
& \vec{V}_{1} \cdot \vec{V}_{2}=\vec{V}_{1} \cdot \vec{V}_{3}=\vec{V}_{2} \cdot \vec{V}_{3}=0 \\
& \vec{V}_{1}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=1-2+1=0 \quad ; \vec{V}_{1} \cdot \vec{V}_{3}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]=1+0-1=0
\end{aligned}
$$

$\vec{V}_{2} \cdot \vec{V}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \cdot\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]=1+0-1=0$. Hen re, the above claim holds.
Let $W=\operatorname{Spern}\left\{\vec{V}_{1}, \overrightarrow{V_{3}}\right\}$. When the orthogonal projection of $\vec{U}=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$ onto W is given by $P_{W} \vec{y}=\frac{\vec{V}_{1} \cdot \vec{v}}{\vec{V}_{1} \cdot \vec{V}_{1}}+\frac{\vec{V}_{1}}{\vec{V}_{3} \cdot \vec{v}} \vec{V}_{3} \cdot \vec{V}_{3}$.

$$
\begin{aligned}
& \Rightarrow \overrightarrow{V_{1}} \cdot \overrightarrow{V_{1}}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]=6 \quad \text { end } \quad \overrightarrow{V_{1}} \cdot \vec{u}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]=3 \\
& \Rightarrow \vec{V}_{3} \cdot \vec{V}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=2 \text { end } \overrightarrow{V_{3}} \cdot \vec{u}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]=-1 \\
& P_{W} \vec{u}=\frac{3}{6}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
\end{aligned}
$$

2. Show in each of the following cases whether or not the subsets of the given vector spaces are subspaces.
i. $U_{1}=\left\{\left.\left[\begin{array}{l}a \\ b\end{array}\right] \right\rvert\, 2 a-3 b=0\right.$ and $\left.a, b \in \mathbb{R}\right\} \subseteq \mathbb{R}^{2}$
ii. $U_{2}=\left\{\left.\left[\begin{array}{ll}a & 0 \\ c & d\end{array}\right] \right\rvert\, a d=0\right.$ and $\left.a, c, d \in \mathbb{R}\right\} \subseteq M_{2 \times 2}, \quad$ where $M_{2 \times 2}$ is the vector space of all 2×2 matrices.
iii. $U_{3}^{m}=\left\{\left.\left[\begin{array}{c}6 s-4 t \\ 2 s+t \\ t-m\end{array}\right] \right\rvert\, s, t \in \mathbb{R}\right\} \subseteq \mathbb{R}^{3}$
a. when $m=0$ and
b. when $m=1$.

$$
\begin{aligned}
& \text { i. Let } \quad \begin{array}{l}
\text { SOLUTe } 10 N \\
U_{1}
\end{array}=\left\{\left.\left[\begin{array}{l}
a \\
b
\end{array}\right] \right\rvert\, 2 a-3 b=0 \text { and } a, b \in \mathbb{R}\right\} \subseteq \mathbb{R}^{2} . \\
& \text { - }\left[\begin{array}{l}
0 \\
0
\end{array}\right] \in U_{1} \text { since } 2(0)-3(0)=0 \text { and } 0 \in \mathbb{R} \text {. } \\
& \text { - Let } \vec{x}_{1}=\left[\begin{array}{l}
a_{1} \\
b_{1}
\end{array}\right] \text { and } \vec{x}_{2}=\left[\begin{array}{l}
a_{2} \\
b_{2}
\end{array}\right] \text { be in } U_{1} \text {. So } \\
& 2 a_{1}-3 b_{1}=0 \text { and } 2 a_{2}-3 b_{2}=0 . \\
& \vec{x}_{1}+\vec{x}_{2}=\left[\begin{array}{l}
a_{1}+a_{2} \\
b_{1}+b_{2}
\end{array}\right] \Rightarrow 2\left(a_{1}+a_{2}\right)-3\left(b_{1}+b_{2}\right)=2 a_{1}-3 b_{1}+2 a_{2}-3 b_{2} \\
& \Rightarrow 2\left(a_{1}+a_{2}\right)-3\left(b_{1}+b_{2}\right)=0 \\
& \Rightarrow \vec{x}_{1}+\vec{x}_{2} \in V_{1} . \\
& \text { Let } \vec{x}=\left[\begin{array}{l}
a \\
b
\end{array}\right] \in V_{1} \text { and } k \in \mathbb{R} \text {. Then } 2 a-3 b=0 .
\end{aligned}
$$

$$
\begin{aligned}
& c \vec{x}=\left[\begin{array}{l}
c a \\
c b
\end{array}\right] . \Rightarrow 2(c a)-3(c b)=c(2 a-3 b)=0 \\
\Rightarrow & c \vec{x} \in U_{1} .
\end{aligned}
$$

ii. $U_{2}=\left\{\left.\left[\begin{array}{ll}a & 0 \\ c & d\end{array}\right] \right\rvert\,\right.$ ad $=0$ and $\left.a, c, d \in \mathbb{R}\right\}$.

- Clearly, $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \in U_{2}$ sine ad =0 holds.
- U_{2} is not closed under addition. We give a counterexample:

Let $A_{1}=\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]$ and $A_{2}=\left[\begin{array}{cc}0 & 0 \\ 0 & -1\end{array}\right]$. (leary, $A_{1} \in V_{2}$ and $A_{2}=U_{2}$ since $(0)(-1)=0$ and $(2)(0)=0$. But

$$
A_{1}+A_{2}=\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right] \quad \text { and } \quad 2(-1) \neq 0
$$

Hence U_{2} is not a subspace of $M_{2 \times 2}$.
iii. a). Let $m=0$.

$$
U_{3}^{0}=\left\{\left.\left[\begin{array}{c}
6 s-4 t \\
2 s+t \\
t
\end{array}\right] \right\rvert\, s, t \in \mathbb{R}\right\}
$$

$$
\Rightarrow\left[\begin{array}{c}
6 s-4 t \\
2 s+t \\
t
\end{array}\right]=\left[\begin{array}{c}
6 s \\
2 s \\
0
\end{array}\right]+\left[\begin{array}{c}
-4 t \\
t \\
t
\end{array}\right]=s\left[\begin{array}{c}
b \\
2 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-4 \\
1 \\
1
\end{array}\right], s, t \in \mathbb{R} .
$$

So U_{3}^{0} is Span $\left\{\left[\begin{array}{c}6 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{c}-4 \\ 1 \\ 1\end{array}\right]\right\}$ and so U_{3}^{0} is a subspace of \mathbb{R}^{3}.
b). Let $m=1$.

$$
U_{3}^{1}=\left\{\left.\left[\begin{array}{c}
6 S-4 t \\
2 S+t \\
t-1
\end{array}\right] \right\rvert\, t, S \in \mathbb{R}\right\}
$$

Claim: The zero vector $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ is not in $U_{3}^{\prime} \cdot$ So consider

$$
\begin{aligned}
\Rightarrow\left[\begin{array}{c}
65-4 t \\
25+t \\
t-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{cc|c}
6 & -4 & 0 \\
2 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] & \sim\left[\begin{array}{cc|c}
6 & -4 & 0 \\
0 & 7 / 3 & 0 \\
0 & 1 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{cc|c}
6 & -4 & 0 \\
0 & 1 & 1 \\
0 & 0 & -7 / 3
\end{array}\right]
\end{aligned}
$$

Since the system has NO solution, it implies that $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \& U_{3}^{\prime}$. U_{3}^{\prime} is Not a Subspace of \mathbb{R}^{3}.
3. Let $C[0, \pi / 2]$ be the vector space of continuous functions defined on $[0, \pi / 2]$ with inner product

$$
\langle f, g\rangle=\int_{0}^{\frac{\pi}{2}} f(t) g(t) d t
$$

where $f, g \in C[0, \pi / 2]$. Let $W=\operatorname{Span}\{1, \sin t\}$.
i. Is the set $\{1, \sin t\}$ an orthogonal set? Justify your answer.
ii. Find an orthogonal basis for W.

$$
\text { So } f \text { and } g \text { are not orthogonal. }
$$

ii. Using the Grom-Schmiett orttoujonalization process we will change $\{f, g\}$ to $\left\{h_{1}, h_{2}\right\}$ such that h_{1} and h_{2} are
orttouganal.

$$
\text { Let } b_{1}(t)=f(t)=1 \text {. }
$$

$$
\begin{aligned}
& \text { - SOLuTION } \\
& \text { i. Let } f(t)=1 \text { and } g(t)=\sin t \text {. } \\
& \langle f, g\rangle=\int_{0}^{\pi / 2} f(t) g(t) d t \\
& =\int_{0}^{\pi / 2} \sin t d t=[-\cos t]_{0}^{\pi / 2}=-[\cos \pi / 2-\cos 0] \\
& \langle f, g\rangle=1 \neq 0 .
\end{aligned}
$$

$\Rightarrow h_{2}(t)=g(t)-P_{h_{1}(t)} g(t)$, where $P_{h_{1}} g$ is the projection of j onto $h_{1}=f$.

$$
\begin{aligned}
& p_{h_{1}(t)} g(t)=\frac{\left\langle h_{1}, g\right\rangle}{\left\langle h_{1}, h_{1}\right\rangle} h_{1}=\frac{\langle f, g\rangle}{\langle f, f\rangle} f . \\
\Rightarrow & \langle f, g\rangle=1 \\
\Rightarrow & \langle f, f\rangle=\int_{0}^{\pi / 2} d t=[t]_{0}^{\pi / 2}=\pi / 2
\end{aligned}
$$

$$
\rho_{h_{1}} g=\frac{1}{\pi / 2}(1)=\frac{2}{\pi} \text { and } h_{7_{2}}(t)=\sin t-\frac{2}{\pi}
$$

$$
\left.\alpha h_{1}, h_{2}\right\rangle=\int_{0}^{\pi / 2}\left(\sin t-\frac{2}{\pi}\right) d t=\int_{0}^{\pi / 2} \sin t d t-\frac{2}{\pi} \int_{0}^{\pi / 2} d t
$$

$$
=1-\frac{2}{\pi}(\pi / 2)=0
$$

Hence, the set $\left\{1, \sin t-\frac{2}{\pi}\right\}$ is an orthorjonal basis for W.

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}-3 x_{2} \\
-6 x_{1}+9 x_{2}
\end{array}\right] .
$$

i. Is T injective?
ii. Is T surjective?

$$
\begin{aligned}
& \text { SOLUITON } \\
& \text { Solvilox } \\
& \tau\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}-3 x_{2} \\
-6 x_{1}+9 x_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
2 & -3 \\
-6 & 9
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
2 & -3 \\
-6 & 9
\end{array}\right] \sim\left[\begin{array}{cc}
2 & -3 \\
0 & 0
\end{array}\right] \sim\left[\begin{array}{cc}
1 & -3 / 2 \\
0 & 0
\end{array}\right] . \\
& \operatorname{col} A=\operatorname{span}\left\{\left[\begin{array}{c}
2 \\
-6
\end{array}\right]\right\} \neq \mathbb{R}^{2} \text { i.e. } \tilde{I}_{m} T \neq \mathbb{R}^{2} \text {. } \\
& \operatorname{NulA}=\operatorname{Span}\left\{\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right\} \neq\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right\} \text {. i.e. } \operatorname{Ker} \tau \neq\{\overrightarrow{0}\} \text {. }
\end{aligned}
$$

i. $\quad \tilde{i}$ is noi injertive $\operatorname{Ker} T \neq\{\overrightarrow{0}\}$.
ii. \tilde{I} is NOT surgective $\tilde{I}_{m} 厂 \neq \mathbb{R}^{2}$.
5. Let $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by

$$
S\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{l}
x_{1}+x_{2}+2 x_{3} \\
2 x_{1}+x_{2}+x_{3}
\end{array}\right] .
$$

i. Is S injective?
ii. Is S surjective?

SOLUIION

$$
\begin{aligned}
& S\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{l}
x_{1}+x_{2}+2 x_{3} \\
2 x_{1}+x_{2}+x_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 1
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & -1 & -3
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 3
\end{array}\right] \\
& \text { Col } A=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}=\mathbb{R}^{2} \text { i.e. } \quad \tilde{t_{m}} S=\mathbb{R}^{2} \\
& \text { Nuu| } A=S \text { pan }\left\{\left[\begin{array}{c}
1 \\
-3 \\
1
\end{array}\right]\right\} \text { i.e. } \quad \operatorname{Ker} S=\left\{\left.t\left[\begin{array}{c}
1 \\
-3 \\
1
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\} \neq\{\overrightarrow{0}\} \text {. }
\end{aligned}
$$

i. S is NOT injective sinte Ker $5 \neq\{\overrightarrow{0}\}$.
$i i$. S is sirjective since $\tilde{t}_{m} S=\mathbb{R}^{2}$.
6. Find the general solution of the system

$$
\begin{array}{rll}
(i-1) x_{1}-4 x_{2} & =4 \\
i x_{1}-2 i x_{2}+(2 i+1) x_{3} & =i+1 \\
(3 i+1) x_{1} & +(2 i-1) x_{3} & =5 .
\end{array}
$$

- SOLUTION

The matrix equation is given by

$$
\left[\begin{array}{ccc}
i-1 & -4 & 0 \\
i & -2 i & 1+2 i \\
1+3 i & 0 & -1+2 i
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4 \\
i+1 \\
5
\end{array}\right]
$$

Consider the aurgneated matrix and find the reduced Echelon of the above matrix.

$$
\left[\begin{array}{ccc|c}
i-1 & -4 & 0 & 4 \\
i & -2 i & 1+2 i & 1+i \\
1+3 i & 0 & -1+2 i & 5
\end{array}\right] \xrightarrow{\sim} R_{1} \rightarrow R_{1}\left[\begin{array}{ccc|c}
1 & 2+2 i & 0 & -2-2 i \\
i & -2 i & 1+2 i & 1+i \\
1+3 i & 0 & -1+2 i & 5
\end{array}\right]
$$

$$
\overbrace{R_{3}-(1+3) R_{1} \rightarrow R_{3}}^{R_{2}-i R_{1} \rightarrow R_{2}}\left[\begin{array}{ccc|c}
1 & 2+2 i & 0 & -2-2 i \\
0 & 2-4 i & 1+2 i & -1+3 i \\
0 & 4-8 i & -1+2 i & 1+8 i
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 2+2 i & 0 & -(2+2 i) \\
0 & 2-4 i & 1+2 i & -1+3 i \\
0 & 0 & -3-2 i & 3+2 i
\end{array}\right] \xrightarrow{\substack{3+2 i}} \overbrace{3}\left[\begin{array}{ccc|c}
1 & 2+2 i & 0 & -(2+2 i) \\
0 & 2-4 i & 1+2 i & -1+3 i \\
0 & 0 & 1 & -1
\end{array}\right]} \\
& \overbrace{R_{2}}^{-(1+2 i) R_{3} \rightarrow R_{2}}\left[\begin{array}{ccc|c}
1 & 2+2 i & 0 & -(2+2 i) \\
0 & 2-4 i & 0 & 5 i \\
0 & 0 & 1 & -1
\end{array}\right] \overbrace{R_{1}-(2+2 i) R_{2} \rightarrow R_{1}}^{\frac{1}{2-4 i} R_{2} \rightarrow R_{2}}\left[\begin{array}{lll|l}
1 & 0 & 0 & 1-i \\
0 & 1 & 0 & -1+\frac{i}{2} \\
0 & 0 & 1 & -1
\end{array}\right] \\
& \left\{\begin{array}{l}
x_{1}=1-i \\
x_{2}=-1+\frac{i}{2} \\
x_{3}=-1
\end{array}\right.
\end{aligned}
$$

