MA8107 OPERATOR ALGEBRA EXERCISES

EXERCISE 1: Let X be a locally compact non-compact Hausdorff space. Show that $\widetilde{C_0(X)}$ is isomorphic to $C(X \cup \{\infty\})$ where $X \cup \{\infty\}$ is the one-point compactification of X.

EXERCISE 2: Show that each element in a C^* -algebra A has a unique decomposition x = a + ib where a and b are self-adjoint elements in A. (Hint: calculate $(a+ib)^*$.)

EXERCISE 3: Let X be a topological space. Say that $C_0(X)$ separates points in X if for each pair of distinct points x_1, x_2 in X there is an $f \in C_0(X)$ such that $f(x_1)$ and $f(x_2)$ are distinct and non-zero. Show that $C_0(X)$ separates points in X if and only if X is a locally compact Hausdorff space.

EXERCISE 4: Let A be a C^* -algebra and let X be a locally compact Hausdorff space. Consider the vector space $C_0(X,A)$ of all continuous functions $f:X\to A$ such that for every $\varepsilon>0$ there is a compact subset K of X such that $||f(x)||<\varepsilon$ for every $x\in X\setminus K$. For $f,g\in C_0(X,A)$ define fg and f^* in $C_0(X,A)$ by (fg)(x)=f(x)g(x) and $f^*(x)=(f(x))^*$ for $x\in X$, and set $||f||=\sup\{||f(x)||\ |\ x\in X\}$. Show that $C_0(X,A)$ is a C^* -algebra.

EXERCISE 5: Let *A* be a unital Banach algebra.

- 1. Show that $\sigma_A(a+b) \subseteq \sigma_A(a) + \sigma_A(b)$ and $\sigma_A(ab) \subseteq \sigma_A(a)\sigma_A(b)$ for all $a,b \in A$. Show that this is not true for all Banach algebras.
- 2. Show that if $a \in Inv(A)$, then $\sigma_A(a) = {\lambda^{-1} \mid \lambda \in \sigma_A(a)}$.

EXERCISE 6: Let A be a Banach algebra. Show that the spectral radius function $r: A \to \mathbf{R}$ is upper semi-continuous.