MA3204 - Exercise 7

Throughout the following exercises A denotes an abelian category, and C denotes an arbitrary
category. For the exercises about localizations we will ignore set-theoretical issues.

-2 —1 0 1
1. Let A be an additive category, let X € A, and let A® = (--- LNy/ES BN TN N N o)
be a complex in A. Define the complex

—od™?
N

1 0 —1
Hom 4 (A®, X) = (- =% Hom4 (A%, X) 2% Hom4(A°, X) =% Homu (A, X)
Show that

Z" Hom4(A®, X) = Homgn(a) (A%, X[n])
H" Hom4(A®, X') = Homg4)(A°%, X[n])

Hint: Show that a morphism f~™: A= — X induces a morphism A®* — X|[n] if and only if f~™
s in the kernel of

n—1
Hom4(A™", X) SN Hom4(A™" 1 X)

and is null-homotopic if and only if it is in the image of
Hom4 (A~ X) —ed Hom 4(A™", X)

2. Let C be a category, and let S C MorC be a class of morphisms in C. Consider the localization
C[S1] defined in the lecture, whose morphism spaces consists of strings of morphisms in C and
formal inverses of morphisms in S.

(a) Show that C[S™!]is a category, with identity morphisms given by the empty strings [ X, (), X].

(b) Show that we have a functor Q: C — C[S™!] given by the identity on objects, and sending
a morphism f: X — Y to the string Q(f) = [X, f,Y]. Furthermore, show that if s € S,
then Q(s) is an isomorphism

(c) Show that (C[S™!], Q) satisfies the universal property of the localization. In other words, if
F: C — D is a functor satisfying that F'(s) is an isomorphism for all s € S, then show that

there exists a unique functor o
F:CclS7'—D

satisfying F = F o Q.

Hint: For the last part, F is defined by sending an object C' to F(C), and by sending a string
[X,Pn, Pn—1,-..,01,Y] to the morphism

F(pn) o F(pp—1)o---0F(p1)

where F(p;) = F(p;) if p; is a morphism in C, and F(p;) = F(s)™! if pi = s~ € S~ for a
morphism s € S.

3. Let C be a category, and let S C MorC be a class of morphisms in C. Assume S admits a
calculus of right fractions. We defined two right fractions (s1, 1) and (s2, o) from X to Y to be



equivalent, written (s1, 1) ~ (s2,aq), if there exists a right fraction (ss, @3) and a commutative

/T\

X<—X3*>Y

\lV

Show that ~ is an equivalence relation on the class of right fractions from X to Y. We denote
the equivalence class of (s, a) by [s, al.

Hint: For transitivity, show first that if (s1,01), (s2,a2) and (s3,a3) are three right fractions
related by the commutative diagram

X1
A
X<—X2*>Y

\TV

then (s1,a1) ~ (s3,a3). For this, first apply the (RF2) axiom to Xz =% X <& X to get a
commutative square

’
s
X541>X3

N

X, 25 X

with s, € S. This gives two morphisms X} —2 Xy and X} 2%y Xy which becomes equal when
composing with sy € S. Now apply aziom (RF3), and then conclude that (s1, 1) ~ (s3,a3).

. Let C be a category, and let S C MorC be a class of morphisms in C. Assume S admits a
calculus of right fractions. Recall that a composite of two right fractions X <+ X; =% Y and

Y&y, 2 Zisa right fraction (s; ot}, 81 0 «}) where ¢} € S and where we have commutative

/\
/\/\

obtained from axiom (RF2).

(a) Show that the equivalence class of (sq0t], 81 0a]) is independent of the choice of morphisms
t} and o above. Let (t1,31) o (s1, 1) denote this unique class.

Hint: Assume (t{,af) is another pair of morphisms satisfying the same conditions as
(t,a4). Using (RF2), we can find a commutative square

X{// v X{/

lu J/t 3’
’

t
X, s X,

with w € S. Then apply aziom (RF3) to conclude that (s1 0,81 0a}) ~ (s1 0t f1oal)



(b) Show that if (tl, 61) ~ (tQ,BQ), then
(t1,B1) o (s1,00) = (t2, B2) o (s1,01)

Hint: (t1, 1) ~ (t2, B2) means there exists a commutative diagram

/T\

Y<—Y3—>Z

\l/

with tg € S. Hence, if we can show that
(t1,B1) o (s1,01) = (t3,83) o (s1,1)

then a similar argument will also imply that (t2,B2) o (s1,1) = (t3,03) o (s1,a1), and we
can conclude using the transitivity of the equivalence relation.

To see that (t2, 82) o (s1, 1) = (t3,03) o (s1,1), choose a commutative diagram

/\
/\/\

with t5 € S. Then (t3,08s) o (s1,a1) = [s1 05,03 o af]. Conclude by considering the
commutative diagram

/Y‘“
/\/\

and use that B1 ouo ) = B30a].
(¢) Show that if (s1,a1) ~ (82, @2), then

(tlaﬁl) © (81,041) = (tlaﬁl) o (527042)

(d) Consider S~!C as defined in the lecture, whose morphisms spaces are equivalence classes of
right fractions. Show that the composition law above induces a well-defined map

o: HoquC(Y, Z) X HOms—lc(X7Y) — HoquC(X, Z)
Hint: Combine part (b) and (c) and the fact that the equivalence relation is transitive.

5. Let C be a category, and let S C MorC be a class of morphisms in C. Assume S admits a
calculus of right fractions. Using the previous exercises, show that S~!C is a category, with

identity morphisms given by the equivalence classes of the right fractions X x5 x.

6. Let C be a category, and let S C MorC be a class of morphisms in C. Assume S admits a calculus
of right fractions. Show that we have an isomorphism of categories

F:S71C - ¢S]



given by the identity on objects, and sending a right fraction X < Y’ % Y to the string
[X,a,s7,Y].
Hint: Note that we have a canonical functor C — S™1C acting as identity on objects and sending

a morphism f: X — Y to the right fraction X L x Ly, Show that this functor sends
morphisms in S to isomorphisms in ST'C. Then use the universal property of C[S™!] to get a
functor G: C[S™Y] — S™IC. Show that G is the inverse to F.

. Let B be an additive category, and let S C Mor B be a class of morphisms in C. Assume S admits
a calculus of right fractions. Let [s1, ;] and [sg, @s] be two morphisms in Homg-15(X,Y). In
the lecture we explained how one can find a morphism s € S and morphisms (1, 82 in B such
that [s1,a1] = [s, f1] and [s2, az] = [s, f2]. We then defined

[s1, 1] + [s2, 2] = [s, B1 + Ba].

The goal of this exercise is to show that this operation is well-defined, i.e. that if [s1, 1] = [t, B]]
and [sg, as] = [t, B5], then
[Sa 51 + BQ] = [tvﬂi + Bé]

In the following [s, o], [s, &/], [s, 5], [s, 8] are morphisms in Homg-15(X,Y)
(a) Show that [s,a] = [s, /] if and only if there exists some ¢ € S such that a0t = o’ ot and

soteS.
Hint: Use aziom (RF'3).

(b) Show that if [s,a] = [s,a/] and [s, 5] = [s, '], then
[s,a+ B] =[s,a’ + B'].

Hint: First show that [s,a + 8] = [s,a’ + (], using part (a). Then show that [s,a’ + ] =
[s,a/ + B'] by a similar argument.

(c) Now assume s, s1,2,t and ay, a9, B1, B2, 31, B, are as above. Applying (RF2) to X; =
X & X1, show that we can find § € S and morphisms 71, 72,71, 74 such that

[Sa ﬂl] = [§> '71] [Sa ﬂ2] = [57 '72] [Sa ﬂl + 52] - [5’71 + ’72]
[t B =[8.7] [t.6s] =[5 [t51+ 8] =[5+

(d) Using part (b) and (c), conclude that [s, 81 + B8] = [t, 81 + B5]-

8. Let B be an additive category, and let S C Mor B be a class of morphisms in C. Assume S admits

a calculus of right fractions. The goal of this exercise is to fill in the remaining details of the
proof that S~!B is preadditive.

(a) Show that the operation + defined in the previous exercise makes Homg-15(X,Y) into an
abelian group with zero element [1x, 0].

(b) Show that composition in S~!B is bilinear with respect to +.
Hint: Using aziom (RF2) three times, show that given morphisms ai,as: X — Y and a
morphism s: Y' =Y, we can find morphisms o}, o X' = Y" and a morphism s': X' — X
in S making the squares

X/ o y! X! oy y!
X 2,y X 2,y

commutative. Use this to show that composition in S~1B is linear in the right argument.

9. Let X* € K(A) be a complex. Show that X*® =20 in D(A) if and only if X* is exact.

10. Let f : A®* — B*® be a morphism in K(A). Show that the following are equivalent.



(a) f factors through an exact complex.
(b) There exists a quasi-isomorphism ¢ : H®* — A® such that foqg=0.
(c) f-id4e =0 in D(A).

Hint: Use the triangulated structure of K(A).



