MA3204 - Exercise 3

- 1. Let $f: R \to S$ be a ring morphism. Show that f induces a faithful functor $f^*: \operatorname{Mod} S \to \operatorname{Mod} R$.
- 2. Recall that a commutative monoid is a set X together with an operation $+: X \times X \to X$ which is commutative, associative, and has a identity element 0_X . Note that an element x of a monoid X will not necessarily have an inverse -x, so X will not necessarily be a group.

A pre-semiadditive category is a category \mathcal{C} together with a monoid structure on each Hom set $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ such that composite

$$\operatorname{Hom}_{\mathcal{C}}(Y,Z) \times \operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{C}}(X,Z) \quad (f,g) \mapsto f \circ g$$

satisfies

$$f \circ (g_1 + g_2) = f \circ g_1 + f \circ g_2 \quad (f_1 + f_2) \circ g = f_1 \circ g + f_2 \circ g$$

and

$$f \circ 0 = 0 = 0 \circ g.$$

Similarly to a preadditive category, we can define the biproduct of two objects in a pre-semiadditive category. A pre-semiadditive category is called *semiadditive* if it has a zero object and the biproduct of any two objects exists. Consider the following assertions:

- (i) \mathcal{C} is an semiadditive category;
- (ii) C is a category that has a zero object 0_C and all finite coproducts and products, and such that the canonical map

$X_1 \coprod X_2 \coprod \cdots \coprod X_n \to X_1 \prod X_2 \prod \cdots \prod X_n$

from a finite coproduct to a finite product is an isomorphism. (here the canonical map is given by the identity map $X_i \xrightarrow{\text{id}} X_i$ for $1 \leq i \leq n$ and by the map $X_i \to 0_{\mathcal{C}} \to X_j$ factoring through the zero-object when $i \neq j$)

The goal of this exercise is to show that these two statements are equivalent

- (a) Assume (ii). Identify the coproduct $X_1 \coprod X_2 \coprod \cdots \coprod X_n$ with the product $X_1 \coprod X_2 \coprod \cdots \coprod X_n$ via the canonical isomorphism and denote it $X_1 \oplus X_2 \oplus \cdots \to X_n$. Similarly to an additive category, a map $X_1 \oplus X_2 \oplus \cdots \to X_n \to Y_1 \oplus Y_2 \oplus \cdots \oplus Y_m$ can be written as a $m \times n$ -matrix with the (i, j)-entry an element in $\operatorname{Hom}_{\mathcal{C}}(X_j, Y_i)$. Consider the following maps:
 - For any X in C, define $\Delta_X := \begin{pmatrix} \mathrm{id}_X \\ \mathrm{id}_X \end{pmatrix} : X \longrightarrow X \oplus X$ such that the projection maps π_1 and π_2 from the product structure satisfy $\pi_1 \Delta_X = \pi_2 \Delta_X = \mathrm{id}_X$;
 - For any X in \mathcal{C} , define $\nabla_X := (\operatorname{id}_X \operatorname{id}_X) : X \oplus X \longrightarrow X$ such that embedding maps ι_1 and ι_2 from the coproduct structure satisfy $\nabla_X \iota_1 = \nabla_X \iota_2 = \operatorname{id}_X$.
 - For any f and g in $\operatorname{Hom}_{\mathcal{C}}(X, Y)$, define

$$f \oplus g := \begin{pmatrix} f & 0 \\ 0 & g \end{pmatrix} : X \oplus X \longrightarrow Y \oplus Y$$

as the unique map for which $\pi_1(f \oplus g)\iota_1 = f$, $\pi_2(f \oplus g)\iota_2 = g$, $\pi_1(f \oplus g)\iota_2 = 0$ and $\pi_2(f \oplus g)\iota_1 = 0$, where π_1 and π_2 are the projections of $Y \oplus Y$ in the first and second component, respectively, and ι_1 and ι_2 are the embeddings into $X \oplus X$ in the first and second component, respectively.

• For any f and g in $\operatorname{Hom}_{\mathcal{C}}(X, Y)$, define f + g in $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ as the composition $\nabla_Y(f \oplus g)\Delta_X$.

Prove that the operation + defines a structure of a commutative monoid in $\operatorname{Hom}_{\mathcal{C}}(X, Y)$.

Hint:

• Let $0 \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ be the unique morphism which factors through the zero object. To show that this is the neutral element under +, use that $f \oplus 0$ can be written as a composite

$$X \oplus X \to X \oplus 0 \to Y \oplus 0 \to Y \oplus Y$$

and use that $X \oplus 0 \cong X$ and $Y \oplus 0 \cong Y$.

• For commutativity of + use that we have a commutative diagram

$$\begin{array}{ccc} X \oplus X & \xrightarrow{f \oplus g} & Y \oplus Y \\ & & \downarrow^{\tau} & & \downarrow^{\tau} \\ X \oplus X & \xrightarrow{g \oplus f} & Y \oplus Y \end{array}$$

where $\tau = \begin{pmatrix} 0 & \mathrm{id} \\ \mathrm{id} & 0 \end{pmatrix}$

• For associativity of + use that the morphisms (f+g) + h and f + (g+h) are both equal to the composite

$$X \xrightarrow{\begin{pmatrix} \mathrm{id}_X \\ \mathrm{id}_X \end{pmatrix}} X \oplus X \oplus X \xrightarrow{\begin{pmatrix} f & 0 & 0 \\ 0 & g & 0 \\ 0 & 0 & h \end{pmatrix}} Y \oplus Y \oplus Y \xrightarrow{\begin{pmatrix} \mathrm{id}_Y & \mathrm{id}_Y \end{pmatrix}} Y$$

(b) Prove that (ii) \Rightarrow (i).

Hint: Here you need to show that the addition as defined in (a) makes C into a semiadditive category. For the identity

$$f \circ (g_1 + g_2) = f \circ g_1 + f \circ g_2$$

with $g_1, g_2 \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ and $f \in \operatorname{Hom}_{\mathcal{C}}(Y, Z)$, use that $f \circ \nabla_Y = \nabla_Z \circ (f \oplus f)$. The identity $(f_1 + f_2) \circ g = f_1 \circ g + f_2 \circ g$ is proved using a dual argument.

(c) Finally prove that (i) \Rightarrow (ii).

Hint: First show that the isomorphism between the empty product and coproduct just amounts to having a zero object. For $n \ge 2$ show that the n-product as defined in the lecture is both a product and a coproduct.

In particular, from (ii) we see that being a semiadditive category is a property of C, and not an extra structure. More precisely, we may say that a given category is semiadditive or not, without specifying which monoid structure on the Hom-sets we are considering, since the monoid structure is forced upon us via the construction in (b).

3. Show that a semiadditive category C is additive if and only if for all objects $X \in C$ the map

$$\begin{pmatrix} \operatorname{id}_X & \operatorname{id}_X \\ 0 & \operatorname{id}_X \end{pmatrix} \colon X \oplus X \to X \oplus X$$

is an isomorphism. Conclude that being an additive category is a property of a category C, and not a structure.

Hint: Let $\phi_X =: X \oplus X \to X \oplus X$ denote the inverse of $\begin{pmatrix} \operatorname{id}_X & \operatorname{id}_X \\ 0 & \operatorname{id}_X \end{pmatrix}$. Show that $\phi = \begin{pmatrix} \operatorname{id}_X & k \\ 0 & \operatorname{id}_X \end{pmatrix}$ where k satisfies $k + \operatorname{id}_X = 0$. Hence, k is an additive inverse of id_X so we can write $k = -\operatorname{id}_X$. Finally, show that for a morphism $f: X \to Y$ the composite $f \circ (-\operatorname{id}_X)$ is an additive inverse of f.

- 4. Show that \mathcal{A} is an abelian category if and only if \mathcal{A}^{op} is an abelian category.
- 5. Let $f: X \to Y$ be a morphism in an abelian category \mathcal{A} . Assume f is both a monomorphism and an epimorphism. Show that f must be an isomorphism (compare with Exercise 1 on Problem sheet 1).

Hint: Use that a monomorphism is a kernel of its cokernel, and that an epimorphism is a cokernel of its kernel.

6. Let \mathcal{A} and \mathcal{B} be abelian categories, and let (F, G) be an adjoint pair of additive functors $F: \mathcal{A} \to \mathcal{B}$ and $G: \mathcal{B} \to \mathcal{A}$. Show that F is right exact and G is left exact.

Hint: One way to prove this is to use that a left adjoint preserves colimits and a right adjoint preserves limits.

- 7. Let \mathcal{A} be category and let be \mathcal{I} a small category. Recall that we defined the functor category Fun $(\mathcal{I}, \mathcal{A})$ in Exercise 7 on the last problem sheet. Show that the following hold:
 - If \mathcal{A} is additive, then Fun $(\mathcal{I}, \mathcal{A})$ is additive.
 - If \mathcal{A} is abelian, then $\operatorname{Fun}(\mathcal{I}, \mathcal{A})$ is abelian.

- If \mathcal{A} is abelian, then a sequence $F_1 \xrightarrow{\eta} F_2 \xrightarrow{\epsilon} F_3$ in Fun $(\mathcal{I}, \mathcal{A})$ is exact if and only it is pointwise exact, i.e. $F_1(I) \xrightarrow{\eta_I} F_2(I) \xrightarrow{\epsilon_I} F_3(I)$ is exact in \mathcal{A} for every $I \in \mathcal{I}$.
- 8. Let \mathcal{A} be an abelian category and let I be the set $\{1,2\}$ endowed with the partial order $1 \leq 2$.
 - (a) Let $\operatorname{Mor}(\mathcal{A})$ denote the category of morphisms of \mathcal{A} , i.e., the category whose objects are morphisms of \mathcal{A} and such that, for any two morphisms $f: X \longrightarrow Y$ and $g: W \longrightarrow Z$, $\operatorname{Hom}_{\operatorname{Mor}(\mathcal{A})}(f,g)$ is the set of all pairs $(h: X \longrightarrow W, i: Y \longrightarrow Z)$ such that if = gh. Show that $\operatorname{Fun}(I, \mathcal{A})$ is equivalent to $\operatorname{Mor}(\mathcal{A})$.
 - (b) Show that the kernel and cokernel can be made into functors

$$\mathsf{Ker}\colon \operatorname{Mor}(\mathcal{A})\to \operatorname{Mor}(\mathcal{A}) \quad \text{and} \quad \mathsf{Coker}\colon \operatorname{Mor}(\mathcal{A})\to \mathsf{Mor}(\mathcal{A}).$$

- (c) Show that Ker is right adjoint to Coker. Deduce that Ker is left exact and Coker is right exact.
- (d) Use (c) to show the following: If

$$0 \longrightarrow X_1 \xrightarrow{g} X_2 \xrightarrow{h} X_3 \longrightarrow 0$$
$$\downarrow^{f_1} \qquad \downarrow^{f_2} \qquad \downarrow^{f_3} \\ 0 \longrightarrow Y_1 \xrightarrow{k} Y_2 \xrightarrow{l} Y_3 \longrightarrow 0$$

is a commutative diagram with exact rows, then taking kernels and cokernels we get exact sequences

$$0 \to \operatorname{Ker} f_1 \to \operatorname{Ker} f_2 \to \operatorname{Ker} f_3$$

Coker $f_1 \to \operatorname{Coker} f_2 \to \operatorname{Coker} f_3 \to 0$

in \mathcal{A} .

Hint: Use exercise 6

(e) Let \mathcal{A} be the category of vectors spaces $\mathsf{Vect}_{\mathbb{K}}$ over a field \mathbb{K} and let F be an object in Fun (I, \mathcal{A}) . Then F is completely described by two vector spaces U := F(1) and V := F(2) and a linear map $f: U \to V$. Also let $R = T_2(\mathbb{K})$ be the ring of lower triangular 2×2 matrices over \mathbb{K} , with addition and multiplication given by addition of matrices and multiplication of matrices. Consider the \mathbb{K} -vector space $\Phi(F) := F(1) \oplus F(2)$ and define the following action of the ring R on $\Phi(F)$

$$\mu \colon R \times \Phi(F) \longrightarrow \Phi(F) \qquad \mu(\begin{pmatrix} \alpha & 0\\ \beta & \gamma \end{pmatrix}, (u, v)) = (\alpha u, \beta f(u) + \gamma v)$$

- (i) Show that $(\Phi(F), \mu_{\Phi(F)})$ is a left *R*-module.
- (ii) Show that this defines a functor $\Phi \colon \operatorname{Fun}(I, \operatorname{Vect}_{\mathbb{K}}) \longrightarrow \operatorname{Mod} R$ (Recall that Mod R is the category of left R-modules).
- (iii) Show that Φ is an equivalence of categories.
- 9. Consider two exact sequences in an abelian category \mathcal{A} as follows:

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0 \qquad 0 \to D \xrightarrow{h} E \xrightarrow{k} F \to 0$$

Show that the following is an exact sequence

$$0 \to A \oplus D \xrightarrow{f \oplus h} B \oplus E \xrightarrow{g \oplus k} C \oplus F \to 0$$

10. Prove the snake lemma in Mod R using diagram chasing methods (i.e., using elements).