MA3204 - Exercise 3

1. Let f: R — S be a ring morphism. Show that f induces a faithful
functor f*: Mod S — Mod R.

2. Recall that a commutative monoid is a set X together with an operation
+: X x X — X which is commutative, associative, and has a identity
element Ox. Note that an element x of a monoid X will not necessarily
have an inverse —z, so X will not necessarily be a group.

A pre-semiadditive category is a category C together with a monoid
structure on each Hom set Home (X, Y') such that composite

Home (Y, Z) x Home(X,Y) — Home(X, Z)  (f,9)— fog
satisfies

folgi+g)=foq+fogs (fit+fi)og=fiog+frog
and
foO0=0=00g.
Similarly to a preadditive category, we can define the biproduct of two
objects in a pre-semiadditive category. A pre-semiadditive category is
called semiadditive if it has a zero object and the biproduct of any two
objects exists. Consider the following assertions:

(i) C is an semiadditive category;

(ii) C is a category that has a zero object 0¢ and all finite coproducts
and products, and such that the canonical map

xJ[X]] 1% = xi[[X]] - T]%-

from a finite coproduct to a finite product is an isomorphism.

(here the canonical map is given by the identity map X; q X, for
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1 <7 < n and by the map X; — 0¢ — X factoring through the
zero-object when i # j)

The goal of this exercise is to show that these two statements are equiv-
alent

(a) Assume (ii). Identify the coproduct X [[ Xo ][] X, with the
product X [[Xo]]---]] X, via the canonical isomorphism and
denote it X7 @& Xy @ --- X,,. Similarly to an additive category, a
map X1 Xod---X,, > Y10Yo®--- DY, can be written as
a m X n-matrix with the (7, j)-entry an element in Home (X}, Y;).
Consider the following maps:

e For any X in C, define Ay := Ei : X — X @ X such
that the projection maps m; and 75 from the product structure
satisfy mAx = mAx = idy;

e For any X in C, define Vx := (idX idX) : XX — X such
that embedding maps ¢; and ¢y from the coproduct structure
satisfy Vxu1 = Vxig = idy.

e For any f and g in Home(X,Y), define

f®g:= (é 2) XoX-—>YaY
as the unique map for which m(f @ g)u; = f, m(f®g)e = g,
m(f ® g)ta = 0 and mo(f ® g)t; = 0, where m; and 7y are
the projections of Y @ Y in the first and second component,
respectively, and ¢, and ¢y are the embeddings into X & X in
the first and second component, respectively.

e For any f and g in Home(X,Y), define f + g in Home(X,Y)
as the composition Vy (f ® g)Ax.

Prove that the operation + defines a structure of a commutative
monoid in Home(X,Y).
Hint:

o Let 0 € Home(X,Y) be the unique morphism which factors

through the zero object. To show that this is the neutral ele-
ment under +, use that f @& 0 can be written as a composite

XX —-Xp0—-Yop0—-YY



and use that X 0= X andY ©0=2Y.

e For commutativity of + use that we have a commutative dia-

gram

Xox 1% vey

I I

Xox 2L, vey

pore o (0 d
where T = id 0

e For associativity of + use that the morphisms (f +¢g)+h and
f+ (g+ h) are both equal to the composite

idy f 00
idy 00 h (idy idy idy)
X —5 XoXeX ——— 5 YaYoeY »Y

(b) Prove that (ii)= (i).
Hint: Here you need to show that the addition as defined in (a)
makes C into a semiadditive category. For the identity

folpr+tg)=fog+fog

with g1,9> € Home(X,Y') and f € Home(Y, Z), use that foVy =
Vzo(f@f). Theidentity (fi+ fa)og= fiog+ frog is proved
using a dual argument.

(c) Finally prove that (i)=-(ii).
Hint: First show that the isomorphism between the empty product
and coproduct just amounts to having a zero object. For n > 2

show that the n-product as defined in the lecture is both a product
and a coproduct.

In particular, from (ii) we see that being a semiadditive category is a
property of C, and not an extra structure. More precisely, we may say
that a given category is semiadditive or not, without specifying which
monoid structure on the Hom-sets we are considering, since the monoid
structure is forced upon us via the construction in (b).



. Show that a semiadditive category C is additive if and only if for all
objects X € C the map

idy id
) XxeX s Xae X
0 id X
is an isomorphism. Conclude that being an additive category is a prop-
erty of a category C, and not a structure.

Hint: Let ox =: X ® X — X & X denote the inverse of ( 0 id
X

Show that ¢ = (I%X
an additive inverse of idx so we can write k = —idy. Finally, show
that for a morphism f: X — 'Y the composite fo(—idx) is an additive
inverse of f.

idy idX)

i(f ) where k satisfies k +idy = 0. Hence, k s
b's

. Show that A is an abelian category if and only if A% is an abelian
category.

. Let f: X — Y be a morphism in an abelian category A. Assume f is
both a monomorphism and an epimorphism. Show that f must be an
isomorphism (compare with Exercise 1 on Problem sheet 1).

Hint: Use that a monomorphism is a kernel of its cokernel, and that

an epimorphism is a cokernel of its kernel.

. Let A and B be abelian categories, and let (F,G) be an adjoint pair
of additive functors F': A — B and G: B — A. Show that F is right
exact and G is left exact.

Hint: One way to prove this is to use that a left adjoint preserves

colimits and a right adjoint preserves limits.

. Let A be category and let be Z a small category. Recall that we defined
the functor category Fun(Z, .A) in Exercise 7 on the last problem sheet.
Show that the following hold:

e If A is additive, then Fun(Z, A) is additive.

e If A is abelian, then Fun(Z, A) is abelian.



o If A is abelian, then a sequence Fy - F, < F3 in Fun(Z, A) is
I

€

exact if and only it is pointwise exact, i.e. Fi(I) 2 Fp(I) <
F5(1) is exact in A for every I € Z.

8. Let A be an abelian category and let I be the set {1,2} endowed with
the partial order 1 < 2.

(a) Let Mor(A) denote the category of morphisms of A, i.e., the cat-

egory whose objects are morphisms of 4 and such that, for any
two morphisms f: X — Y and g: W — Z, Homyior(a)(f, g) is
the set of all pairs (h: X — W,i: Y — Z) such that if = gh.
Show that Fun(7, A) is equivalent to Mor(.A).

(b) Show that the kernel and cokernel can be made into functors

Ker: Mor(A) — Mor(A) and Coker: Mor(A) — Mor(A).

(c) Show that Ker is right adjoint to Coker. Deduce that Ker is left

exact and Coker is right exact.

(d) Use (c) to show the following: If

0

)

~
~

~

X, 2 x, s X,
lf 1 lf 2 lf 3
I e

is a commutative diagram with exact rows, then taking kernels
and cokernels we get exact sequences

\
7

0 >

\
7

> 0

0 — Ker f; — Ker fo — Ker f3

Coker f; — Coker fo — Coker f3 — 0
in A.
Hint: Use exercise 6

Let A be the category of vectors spaces Vectg over a field K and
let F' be an object in Fun(/,.A). Then F is completely described
by two vector spaces U := F(1) and V := F(2) and a linear map
f:U — V. Also let R = T5(K) be the ring of lower triangular
2 X 2 matrices over K, with addition and multiplication given by
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10.

addition of matrices and multiplication of matrices. Consider the
K-vector space ®(F) := F(1) & F(2) and define the following

action of the ring R on ®(F)

i R x ®(F) —s O(F) u((g 3>,(UJ0)=(aUJiﬂu)+vm)

(i) Show that (®(F), ue(r)) is a left R-module.

(ii) Show that this defines a functor ®: Fun(/, Vectx) — Mod R

(Recall that Mod R is the category of left R-modules).

(iii) Show that ® is an equivalence of categories.

Consider two exact sequences in an abelian category A as follows:

0ALBS S0 0sDLEEF S0

Show that the following is an exact sequence

0sAeD M BeoE L caF =0

Prove the snake lemma in Mod R using diagram chasing methods (i.e.,

using elements).



