
MA3204 - Exercise 3

1. Let f : R → S be a ring morphism. Show that f induces a faithful
functor f ∗ : ModS → ModR.

2. Recall that a commutative monoid is a setX together with an operation
+: X ×X → X which is commutative, associative, and has a identity
element 0X . Note that an element x of a monoid X will not necessarily
have an inverse −x, so X will not necessarily be a group.

A pre-semiadditive category is a category C together with a monoid
structure on each Hom set HomC(X, Y ) such that composite

HomC(Y, Z)× HomC(X, Y )→ HomC(X,Z) (f, g) 7→ f ◦ g

satisfies

f ◦ (g1 + g2) = f ◦ g1 + f ◦ g2 (f1 + f2) ◦ g = f1 ◦ g + f2 ◦ g

and
f ◦ 0 = 0 = 0 ◦ g.

Similarly to a preadditive category, we can define the biproduct of two
objects in a pre-semiadditive category. A pre-semiadditive category is
called semiadditive if it has a zero object and the biproduct of any two
objects exists. Consider the following assertions:

(i) C is an semiadditive category;

(ii) C is a category that has a zero object 0C and all finite coproducts
and products, and such that the canonical map

X1

∐
X2

∐
· · ·
∐

Xn → X1

∏
X2

∏
· · ·
∏

Xn

from a finite coproduct to a finite product is an isomorphism.

(here the canonical map is given by the identity map Xi
id−→ Xi for
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1 ≤ i ≤ n and by the map Xi → 0C → Xj factoring through the
zero-object when i 6= j)

The goal of this exercise is to show that these two statements are equiv-
alent

(a) Assume (ii). Identify the coproduct X1

∐
X2

∐
· · ·
∐
Xn with the

product X1

∏
X2

∏
· · ·
∏
Xn via the canonical isomorphism and

denote it X1 ⊕ X2 ⊕ · · ·Xn. Similarly to an additive category, a
map X1 ⊕ X2 ⊕ · · ·Xn → Y1 ⊕ Y2 ⊕ · · · ⊕ Ym can be written as
a m× n-matrix with the (i, j)-entry an element in HomC(Xj, Yi).
Consider the following maps:

• For any X in C, define ∆X :=

(
idX
idX

)
: X −→ X ⊕ X such

that the projection maps π1 and π2 from the product structure
satisfy π1∆X = π2∆X = idX ;

• For any X in C, define∇X :=
(
idX idX

)
: X⊕X −→ X such

that embedding maps ι1 and ι2 from the coproduct structure
satisfy ∇Xι1 = ∇Xι2 = idX .

• For any f and g in HomC(X, Y ), define

f ⊕ g :=

(
f 0
0 g

)
: X ⊕X −→ Y ⊕ Y

as the unique map for which π1(f ⊕g)ι1 = f , π2(f ⊕g)ι2 = g,
π1(f ⊕ g)ι2 = 0 and π2(f ⊕ g)ι1 = 0, where π1 and π2 are
the projections of Y ⊕ Y in the first and second component,
respectively, and ι1 and ι2 are the embeddings into X ⊕X in
the first and second component, respectively.

• For any f and g in HomC(X, Y ), define f + g in HomC(X, Y )
as the composition ∇Y (f ⊕ g)∆X .

Prove that the operation + defines a structure of a commutative
monoid in HomC(X, Y ).

Hint:

• Let 0 ∈ HomC(X, Y ) be the unique morphism which factors
through the zero object. To show that this is the neutral ele-
ment under +, use that f ⊕ 0 can be written as a composite

X ⊕X → X ⊕ 0→ Y ⊕ 0→ Y ⊕ Y
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and use that X ⊕ 0 ∼= X and Y ⊕ 0 ∼= Y .

• For commutativity of + use that we have a commutative dia-
gram

X ⊕X Y ⊕ Y

X ⊕X Y ⊕ Y

τ

f⊕g

τ

g⊕f

where τ =

(
0 id
id 0

)
• For associativity of + use that the morphisms (f + g) +h and
f + (g + h) are both equal to the composite

X


idX
idX
idX


−−−−−→ X⊕X⊕X


f 0 0
0 g 0
0 0 h


−−−−−−−−→ Y⊕Y⊕Y

(
idY idY idY

)
−−−−−−−−−−−−→ Y

(b) Prove that (ii)⇒ (i).

Hint: Here you need to show that the addition as defined in (a)
makes C into a semiadditive category. For the identity

f ◦ (g1 + g2) = f ◦ g1 + f ◦ g2

with g1, g2 ∈ HomC(X, Y ) and f ∈ HomC(Y, Z), use that f ◦∇Y =
∇Z ◦ (f ⊕ f). The identity (f1 + f2) ◦ g = f1 ◦ g + f2 ◦ g is proved
using a dual argument.

(c) Finally prove that (i)⇒(ii).

Hint: First show that the isomorphism between the empty product
and coproduct just amounts to having a zero object. For n ≥ 2
show that the n-product as defined in the lecture is both a product
and a coproduct.

In particular, from (ii) we see that being a semiadditive category is a
property of C, and not an extra structure. More precisely, we may say
that a given category is semiadditive or not, without specifying which
monoid structure on the Hom-sets we are considering, since the monoid
structure is forced upon us via the construction in (b).
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3. Show that a semiadditive category C is additive if and only if for all
objects X ∈ C the map(

idX idX
0 idX

)
: X ⊕X → X ⊕X

is an isomorphism. Conclude that being an additive category is a prop-
erty of a category C, and not a structure.

Hint: Let φX =: X ⊕X → X ⊕X denote the inverse of

(
idX idX
0 idX

)
.

Show that φ =

(
idX k
0 idX

)
where k satisfies k + idX = 0. Hence, k is

an additive inverse of idX so we can write k = − idX . Finally, show
that for a morphism f : X → Y the composite f ◦(− idX) is an additive
inverse of f .

4. Show that A is an abelian category if and only if Aop is an abelian
category.

5. Let f : X → Y be a morphism in an abelian category A. Assume f is
both a monomorphism and an epimorphism. Show that f must be an
isomorphism (compare with Exercise 1 on Problem sheet 1).

Hint: Use that a monomorphism is a kernel of its cokernel, and that
an epimorphism is a cokernel of its kernel.

6. Let A and B be abelian categories, and let (F,G) be an adjoint pair
of additive functors F : A → B and G : B → A. Show that F is right
exact and G is left exact.

Hint: One way to prove this is to use that a left adjoint preserves
colimits and a right adjoint preserves limits.

7. Let A be category and let be I a small category. Recall that we defined
the functor category Fun(I,A) in Exercise 7 on the last problem sheet.
Show that the following hold:

• If A is additive, then Fun(I,A) is additive.

• If A is abelian, then Fun(I,A) is abelian.
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• If A is abelian, then a sequence F1
η−→ F2

ε−→ F3 in Fun(I,A) is

exact if and only it is pointwise exact, i.e. F1(I)
ηI−→ F2(I)

εI−→
F3(I) is exact in A for every I ∈ I.

8. Let A be an abelian category and let I be the set {1, 2} endowed with
the partial order 1 ≤ 2.

(a) Let Mor(A) denote the category of morphisms of A, i.e., the cat-
egory whose objects are morphisms of A and such that, for any
two morphisms f : X −→ Y and g : W −→ Z, HomMor(A)(f, g) is
the set of all pairs (h : X −→ W, i : Y −→ Z) such that if = gh.
Show that Fun(I,A) is equivalent to Mor(A).

(b) Show that the kernel and cokernel can be made into functors

Ker : Mor(A)→ Mor(A) and Coker : Mor(A)→ Mor(A).

(c) Show that Ker is right adjoint to Coker. Deduce that Ker is left
exact and Coker is right exact.

(d) Use (c) to show the following: If

0 X1 X2 X3 0

0 Y1 Y2 Y3 0

f1

g

f2

h

f3

k l

is a commutative diagram with exact rows, then taking kernels
and cokernels we get exact sequences

0→ Ker f1 → Ker f2 → Ker f3

Coker f1 → Coker f2 → Coker f3 → 0

in A.

Hint: Use exercise 6

(e) Let A be the category of vectors spaces VectK over a field K and
let F be an object in Fun(I,A). Then F is completely described
by two vector spaces U := F (1) and V := F (2) and a linear map
f : U → V . Also let R = T2(K) be the ring of lower triangular
2× 2 matrices over K, with addition and multiplication given by
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addition of matrices and multiplication of matrices. Consider the
K-vector space Φ(F ) := F (1) ⊕ F (2) and define the following
action of the ring R on Φ(F )

µ : R× Φ(F ) −→ Φ(F ) µ(

(
α 0
β γ

)
, (u, v)) = (αu, βf(u) + γv)

(i) Show that (Φ(F ), µΦ(F )) is a left R-module.

(ii) Show that this defines a functor Φ: Fun(I,VectK) −→ ModR
(Recall that ModR is the category of left R-modules).

(iii) Show that Φ is an equivalence of categories.

9. Consider two exact sequences in an abelian category A as follows:

0→ A
f−→ B

g−→ C → 0 0→ D
h−→ E

k−→ F → 0

Show that the following is an exact sequence

0→ A⊕D f⊕h−−→ B ⊕ E g⊕k−−→ C ⊕ F → 0

10. Prove the snake lemma in ModR using diagram chasing methods (i.e.,
using elements).
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