MA3204 - Exercise 7

Throughout the following exercises \mathcal{A} denotes an abelian category, and \mathcal{C} denotes an arbitrary category. For the exercises about localizations we will ignore set-theoretical issues.

1. Let \mathcal{A} be an additive category, let $X \in \mathcal{A}$, and let $A^{\bullet}=\left(\cdots \xrightarrow{d^{-2}} A^{-1} \xrightarrow{d^{-1}} A^{0} \xrightarrow{d^{0}} A^{1} \xrightarrow{d^{1}} \cdots\right)$ be a complex in \mathcal{A}. Define the complex
$\operatorname{Hom}_{\mathcal{A}}\left(A^{\bullet}, X\right)=\left(\cdots \xrightarrow{-\circ d^{1}} \operatorname{Hom}_{\mathcal{A}}\left(A^{1}, X\right) \xrightarrow{-\circ d^{0}} \operatorname{Hom}_{\mathcal{A}}\left(A^{0}, X\right) \xrightarrow{-\circ d^{-1}} \operatorname{Hom}_{\mathcal{A}}\left(A^{-1}, X\right) \xrightarrow{-\circ d^{-2}} \cdots\right)$
Show that

$$
\begin{aligned}
Z^{n} \operatorname{Hom}_{\mathcal{A}}\left(A^{\bullet}, X\right) & =\operatorname{Hom}_{\mathbf{C h}(\mathcal{A})}\left(A^{\bullet}, X[n]\right) \\
H^{n} \operatorname{Hom}_{\mathcal{A}}\left(A^{\bullet}, X\right) & =\operatorname{Hom}_{\mathbf{K}(\mathcal{A})}\left(A^{\bullet}, X[n]\right)
\end{aligned}
$$

2. Let \mathcal{C} be a category, and let $S \subset \operatorname{Mor} \mathcal{C}$ be a class of morphisms in \mathcal{C}. Consider the localization $\mathcal{C}\left[S^{-1}\right]$ defined in the lecture, whose morphism spaces consists of strings of morphisms in \mathcal{C} and formal inverses of morphisms in S.
(a) Show that $\mathcal{C}\left[S^{-1}\right]$ is a category, with identity morphisms given by the empty strings $[X, \emptyset, X]$.
(b) Show that we have a functor $Q: \mathcal{C} \rightarrow \mathcal{C}\left[S^{-1}\right]$ given by the identity on objects, and sending a morphism $f: X \rightarrow Y$ to the string $Q(f)=[X, f, Y]$. Furthermore, show that if $s \in S$, then $Q(s)$ is an isomorphism
(c) Show that $\left(\mathcal{C}\left[S^{-1}\right], Q\right)$ satisfies the universal property of the localization. In other words, if $F: \mathcal{C} \rightarrow \mathcal{D}$ is a functor satisfying that $F(s)$ is an isomorphism for all $s \in S$, then show that there exists a unique functor

$$
\bar{F}: \mathcal{C}\left[S^{-1}\right] \rightarrow \mathcal{D}
$$

satisfying $F=\bar{F} \circ Q$.
3. Let \mathcal{C} be a category, and let $S \subset \operatorname{Mor} \mathcal{C}$ be a class of morphisms in \mathcal{C}. Assume S admits a calculus of right fractions. We defined two right fractions $\left(s_{1}, \alpha_{1}\right)$ and $\left(s_{2}, \alpha_{2}\right)$ from X to Y to be equivalent, written $\left(s_{1}, \alpha_{1}\right) \sim\left(s_{2}, \alpha_{2}\right)$, if there exists a right fraction $\left(s_{3}, \alpha_{3}\right)$ and a commutative diagram

Show that \sim is an equivalence relation on the class of right fractions from X to Y. We denote the equivalence class of (s, α) by $[s, \alpha]$.
4. Let \mathcal{C} be a category, and let $S \subset \operatorname{Mor} \mathcal{C}$ be a class of morphisms in \mathcal{C}. Assume S admits a calculus of right fractions. Recall that a composite of two right fractions $X \stackrel{s_{1}}{\leftarrow} X_{1} \xrightarrow{\alpha_{1}} Y$ and $Y \stackrel{t_{1}}{\leftarrow} Y_{1} \xrightarrow{\beta_{1}} Z$ is a right fraction $\left(s_{1} \circ t_{1}^{\prime}, \beta_{1} \circ \alpha_{1}^{\prime}\right)$ where $t_{1}^{\prime} \in S$ and where we have commutative
square

obtained from axiom (RF2).
(a) Show that the equivalence class of $\left(s_{1} \circ t_{1}^{\prime}, \beta_{1} \circ \alpha_{1}^{\prime}\right)$ is independent of the choice of morphisms t_{1}^{\prime} and α_{1}^{\prime} above. Let $\left(t_{1}, \beta_{1}\right) \circ\left(s_{1}, \alpha_{1}\right)$ denote this unique class.
(b) Show that if $\left(t_{1}, \beta_{1}\right) \sim\left(t_{2}, \beta_{2}\right)$, then

$$
\left(t_{1}, \beta_{1}\right) \circ\left(s_{1}, \alpha_{1}\right)=\left(t_{2}, \beta_{2}\right) \circ\left(s_{1}, \alpha_{1}\right)
$$

(c) Show that if $\left(s_{1}, \alpha_{1}\right) \sim\left(s_{2}, \alpha_{2}\right)$, then

$$
\left(t_{1}, \beta_{1}\right) \circ\left(s_{1}, \alpha_{1}\right)=\left(t_{1}, \beta_{1}\right) \circ\left(s_{2}, \alpha_{2}\right)
$$

(d) Consider $S^{-1} \mathcal{C}$ as defined in the lecture, whose morphisms spaces are equivalence classes of right fractions. Show that the composition law above induces a well-defined map

$$
\circ: \operatorname{Hom}_{S^{-1} \mathcal{C}}(Y, Z) \times \operatorname{Hom}_{S^{-1} \mathcal{C}}(X, Y) \rightarrow \operatorname{Hom}_{S^{-1} \mathcal{C}}(X, Z)
$$

5. Let \mathcal{C} be a category, and let $S \subset$ Mor \mathcal{C} be a class of morphisms in \mathcal{C}. Assume S admits a calculus of right fractions. Using the previous exercises, show that $S^{-1} \mathcal{C}$ is a category, with identity morphisms given by the equivalence classes of the right fractions $X \stackrel{1}{\leftarrow} X \xrightarrow{1} X$.
6. Let \mathcal{C} be a category, and let $S \subset \operatorname{Mor} \mathcal{C}$ be a class of morphisms in \mathcal{C}. Assume S admits a calculus of right fractions. Show that we have an isomorphism of categories

$$
F: S^{-1} \mathcal{C} \rightarrow \mathcal{C}\left[S^{-1}\right]
$$

given by the identity on objects, and sending a right fraction $X \underset{\leftarrow}{\leftarrow} Y^{\prime} \xrightarrow{\alpha} Y$ to the string $\left[X, \alpha, s^{-}, Y\right]$.
7. Let \mathcal{B} be an additive category, and let $S \subset \operatorname{Mor} \mathcal{B}$ be a class of morphisms in \mathcal{C}. Assume S admits a calculus of right fractions. Let $\left[s_{1}, \alpha_{1}\right]$ and $\left[s_{2}, \alpha_{2}\right]$ be two morphisms in $\operatorname{Hom}_{S^{-1} \mathcal{B}}(X, Y)$. In the lecture we explained how one can find a morphism $s \in S$ and morphisms β_{1}, β_{2} in \mathcal{B} such that $\left[s_{1}, \alpha_{1}\right]=\left[s, \beta_{1}\right]$ and $\left[s_{2}, \alpha_{2}\right]=\left[s, \beta_{2}\right]$. We then defined

$$
\left[s_{1}, \alpha_{1}\right]+\left[s_{2}, \alpha_{2}\right]=\left[s, \beta_{1}+\beta_{2}\right] .
$$

The goal of this exercise is to show that this operation is well-defined, i.e. that if $\left[s_{1}, \alpha_{1}\right]=\left[t, \beta_{1}^{\prime}\right]$ and $\left[s_{2}, \alpha_{2}\right]=\left[t, \beta_{2}^{\prime}\right]$, then

$$
\left[s, \beta_{1}+\beta_{2}\right]=\left[t, \beta_{1}^{\prime}+\beta_{2}^{\prime}\right] .
$$

In the following $[s, \alpha],\left[s, \alpha^{\prime}\right],[s, \beta],\left[s, \beta^{\prime}\right]$ are morphisms in $\operatorname{Hom}_{S^{-1}} \mathcal{B}(X, Y)$
(a) Show that $[s, \alpha]=\left[s, \alpha^{\prime}\right]$ if and only if there exists some $t \in S$ such that $\alpha \circ t=\alpha^{\prime} \circ t$ and $s \circ t \in S$.
(b) Show that if $[s, \alpha]=\left[s, \alpha^{\prime}\right]$ and $[s, \beta]=\left[s, \beta^{\prime}\right]$, then

$$
[s, \alpha+\beta]=\left[s, \alpha^{\prime}+\beta^{\prime}\right] .
$$

(c) Now assume s, s_{1}, s_{2}, t and $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \beta_{1}^{\prime}, \beta_{2}^{\prime}$ are as above. Applying (RF2) to $X_{1} \xrightarrow{s}$ $X \stackrel{t}{\leftarrow} X_{1}^{\prime}$, show that we can find $\tilde{s} \in S$ and morphisms $\gamma_{1}, \gamma_{2}, \gamma_{1}^{\prime}, \gamma_{2}^{\prime}$ such that

$$
\begin{array}{lll}
{\left[s, \beta_{1}\right]=\left[\tilde{s}, \gamma_{1}\right]} & {\left[s, \beta_{2}\right]=\left[\tilde{s}, \gamma_{2}\right]} & {\left[s, \beta_{1}+\beta_{2}\right]=\left[\tilde{s}, \gamma_{1}+\gamma_{2}\right]} \\
{\left[t, \beta_{1}^{\prime}\right]=\left[\tilde{s}, \gamma_{1}^{\prime}\right]} & {\left[t, \beta_{2}^{\prime}\right]=\left[\tilde{s}, \gamma_{2}^{\prime}\right]} & {\left[t, \beta_{1}^{\prime}+\beta_{2}^{\prime}\right]=\left[\tilde{s}, \gamma_{1}^{\prime}+\gamma_{2}^{\prime}\right] .}
\end{array}
$$

(d) Using part (b) and (c), conclude that $\left[s, \beta_{1}+\beta_{2}\right]=\left[t, \beta_{1}^{\prime}+\beta_{2}^{\prime}\right]$.
8. Let \mathcal{B} be an additive category, and let $S \subset \operatorname{Mor} \mathcal{B}$ be a class of morphisms in \mathcal{C}. Assume S admits a calculus of right fractions. The goal of this exercise is to fill in the remaining details of the proof that $S^{-1} \mathcal{B}$ is preadditive.
(a) Show that the operation + defined in the previous exercise makes $\operatorname{Hom}_{S^{-1} \mathcal{B}}(X, Y)$ into an abelian group with zero element $\left[1_{X}, 0\right]$.
(b) Show that composition in $S^{-1} \mathcal{B}$ is bilinear with respect to + .
9. Let $X^{\bullet} \in \mathbf{K}(\mathcal{A})$ be a complex. Show that $X^{\bullet} \cong 0$ in $\mathbf{D}(\mathcal{A})$ if and only if X^{\bullet} is exact.
10. Let $f: A^{\bullet} \rightarrow B^{\bullet}$ be a morphism in $\mathbf{K}(\mathcal{A})$. Show that the following are equivalent.
(a) f factors through an exact complex.
(b) There exists a quasi-isomorphism $q: H^{\bullet} \rightarrow A^{\bullet}$ such that $f \circ q=0$.
(c) $f \cdot \operatorname{id}_{A}^{-1}=0$ in $\mathbf{D}(\mathcal{A})$.

