MA3204 - Exercise 7

Throughout the following exercises \mathcal{A} denotes an abelian category, and \mathcal{C} denotes an arbitrary category. For the exercises about localizations we will ignore set-theoretical issues.

1. Let \mathcal{A} be an additive category, let $X \in \mathcal{A}$, and let $A^{\bullet} = (\cdots \xrightarrow{d^{-2}} A^{-1} \xrightarrow{d^{-1}} A^0 \xrightarrow{d^0} A^1 \xrightarrow{d^1} \cdots)$ be a complex in \mathcal{A} . Define the complex

 $\operatorname{Hom}_{\mathcal{A}}(A^{\bullet}, X) = (\cdots \xrightarrow{-\circ d^{1}} \operatorname{Hom}_{\mathcal{A}}(A^{1}, X) \xrightarrow{-\circ d^{0}} \operatorname{Hom}_{\mathcal{A}}(A^{0}, X) \xrightarrow{-\circ d^{-1}} \operatorname{Hom}_{\mathcal{A}}(A^{-1}, X) \xrightarrow{-\circ d^{-2}} \cdots)$

Show that

$$Z^{n} \operatorname{Hom}_{\mathcal{A}}(A^{\bullet}, X) = \operatorname{Hom}_{\mathbf{Ch}(\mathcal{A})}(A^{\bullet}, X[n])$$
$$H^{n} \operatorname{Hom}_{\mathcal{A}}(A^{\bullet}, X) = \operatorname{Hom}_{\mathbf{K}(\mathcal{A})}(A^{\bullet}, X[n])$$

- 2. Let \mathcal{C} be a category, and let $S \subset \operatorname{Mor} \mathcal{C}$ be a class of morphisms in \mathcal{C} . Consider the localization $\mathcal{C}[S^{-1}]$ defined in the lecture, whose morphism spaces consists of strings of morphisms in \mathcal{C} and formal inverses of morphisms in S.
 - (a) Show that $\mathcal{C}[S^{-1}]$ is a category, with identity morphisms given by the empty strings $[X, \emptyset, X]$.
 - (b) Show that we have a functor $Q: \mathcal{C} \to \mathcal{C}[S^{-1}]$ given by the identity on objects, and sending a morphism $f: X \to Y$ to the string Q(f) = [X, f, Y]. Furthermore, show that if $s \in S$, then Q(s) is an isomorphism
 - (c) Show that $(\mathcal{C}[S^{-1}], Q)$ satisfies the universal property of the localization. In other words, if $F: \mathcal{C} \to \mathcal{D}$ is a functor satisfying that F(s) is an isomorphism for all $s \in S$, then show that there exists a unique functor

$$\overline{F}: \mathcal{C}[S^{-1}] \to \mathcal{D}$$

satisfying $F = \overline{F} \circ Q$.

3. Let \mathcal{C} be a category, and let $S \subset \text{Mor }\mathcal{C}$ be a class of morphisms in \mathcal{C} . Assume S admits a calculus of right fractions. We defined two right fractions (s_1, α_1) and (s_2, α_2) from X to Y to be equivalent, written $(s_1, \alpha_1) \sim (s_2, \alpha_2)$, if there exists a right fraction (s_3, α_3) and a commutative diagram

Show that \sim is an equivalence relation on the class of right fractions from X to Y. We denote the equivalence class of (s, α) by $[s, \alpha]$.

4. Let \mathcal{C} be a category, and let $S \subset \operatorname{Mor} \mathcal{C}$ be a class of morphisms in \mathcal{C} . Assume S admits a calculus of right fractions. Recall that a composite of two right fractions $X \xleftarrow{s_1} X_1 \xrightarrow{\alpha_1} Y$ and $Y \xleftarrow{t_1} Y_1 \xrightarrow{\beta_1} Z$ is a right fraction $(s_1 \circ t'_1, \beta_1 \circ \alpha'_1)$ where $t'_1 \in S$ and where we have commutative

square

obtained from axiom (RF2).

- (a) Show that the equivalence class of $(s_1 \circ t'_1, \beta_1 \circ \alpha'_1)$ is independent of the choice of morphisms t'_1 and α'_1 above. Let $(t_1, \beta_1) \circ (s_1, \alpha_1)$ denote this unique class.
- (b) Show that if $(t_1, \beta_1) \sim (t_2, \beta_2)$, then

$$(t_1, \beta_1) \circ (s_1, \alpha_1) = (t_2, \beta_2) \circ (s_1, \alpha_1)$$

(c) Show that if $(s_1, \alpha_1) \sim (s_2, \alpha_2)$, then

$$(t_1, \beta_1) \circ (s_1, \alpha_1) = (t_1, \beta_1) \circ (s_2, \alpha_2)$$

(d) Consider $S^{-1}C$ as defined in the lecture, whose morphisms spaces are equivalence classes of right fractions. Show that the composition law above induces a well-defined map

$$\circ\colon \operatorname{Hom}_{S^{-1}\mathcal{C}}(Y,Z) \times \operatorname{Hom}_{S^{-1}\mathcal{C}}(X,Y) \to \operatorname{Hom}_{S^{-1}\mathcal{C}}(X,Z).$$

- 5. Let \mathcal{C} be a category, and let $S \subset \operatorname{Mor} \mathcal{C}$ be a class of morphisms in \mathcal{C} . Assume S admits a calculus of right fractions. Using the previous exercises, show that $S^{-1}\mathcal{C}$ is a category, with identity morphisms given by the equivalence classes of the right fractions $X \xleftarrow{1}{} X \xrightarrow{1}{} X$.
- 6. Let C be a category, and let $S \subset Mor C$ be a class of morphisms in C. Assume S admits a calculus of right fractions. Show that we have an *isomorphism* of categories

$$F: S^{-1}\mathcal{C} \to \mathcal{C}[S^{-1}]$$

given by the identity on objects, and sending a right fraction $X \stackrel{s}{\leftarrow} Y' \stackrel{\alpha}{\rightarrow} Y$ to the string $[X, \alpha, s^-, Y]$.

7. Let \mathcal{B} be an additive category, and let $S \subset \operatorname{Mor} \mathcal{B}$ be a class of morphisms in \mathcal{C} . Assume S admits a calculus of right fractions. Let $[s_1, \alpha_1]$ and $[s_2, \alpha_2]$ be two morphisms in $\operatorname{Hom}_{S^{-1}\mathcal{B}}(X, Y)$. In the lecture we explained how one can find a morphism $s \in S$ and morphisms β_1, β_2 in \mathcal{B} such that $[s_1, \alpha_1] = [s, \beta_1]$ and $[s_2, \alpha_2] = [s, \beta_2]$. We then defined

$$[s_1, \alpha_1] + [s_2, \alpha_2] = [s, \beta_1 + \beta_2].$$

The goal of this exercise is to show that this operation is well-defined, i.e. that if $[s_1, \alpha_1] = [t, \beta'_1]$ and $[s_2, \alpha_2] = [t, \beta'_2]$, then

$$[s, \beta_1 + \beta_2] = [t, \beta_1' + \beta_2'].$$

In the following $[s, \alpha], [s, \alpha'], [s, \beta], [s, \beta']$ are morphisms in $\operatorname{Hom}_{S^{-1}\mathcal{B}}(X, Y)$

- (a) Show that $[s, \alpha] = [s, \alpha']$ if and only if there exists some $t \in S$ such that $\alpha \circ t = \alpha' \circ t$ and $s \circ t \in S$.
- (b) Show that if $[s, \alpha] = [s, \alpha']$ and $[s, \beta] = [s, \beta']$, then

$$[s, \alpha + \beta] = [s, \alpha' + \beta'].$$

(c) Now assume s, s_1, s_2, t and $\alpha_1, \alpha_2, \beta_1, \beta_2, \beta'_1, \beta'_2$ are as above. Applying (RF2) to $X_1 \xrightarrow{s} X \xleftarrow{t} X'_1$, show that we can find $\tilde{s} \in S$ and morphisms $\gamma_1, \gamma_2, \gamma'_1, \gamma'_2$ such that

$$\begin{split} [s,\beta_1] &= [\tilde{s},\gamma_1] \quad [s,\beta_2] = [\tilde{s},\gamma_2] \quad [s,\beta_1+\beta_2] = [\tilde{s},\gamma_1+\gamma_2] \\ [t,\beta_1'] &= [\tilde{s},\gamma_1'] \quad [t,\beta_2'] = [\tilde{s},\gamma_2'] \quad [t,\beta_1'+\beta_2'] = [\tilde{s},\gamma_1'+\gamma_2']. \end{split}$$

- (d) Using part (b) and (c), conclude that $[s, \beta_1 + \beta_2] = [t, \beta'_1 + \beta'_2]$.
- 8. Let \mathcal{B} be an additive category, and let $S \subset \operatorname{Mor} \mathcal{B}$ be a class of morphisms in \mathcal{C} . Assume S admits a calculus of right fractions. The goal of this exercise is to fill in the remaining details of the proof that $S^{-1}\mathcal{B}$ is preadditive.
 - (a) Show that the operation + defined in the previous exercise makes $\operatorname{Hom}_{S^{-1}\mathcal{B}}(X,Y)$ into an abelian group with zero element $[1_X, 0]$.
 - (b) Show that composition in $S^{-1}\mathcal{B}$ is bilinear with respect to +.
- 9. Let $X^{\bullet} \in \mathbf{K}(\mathcal{A})$ be a complex. Show that $X^{\bullet} \cong 0$ in $\mathbf{D}(\mathcal{A})$ if and only if X^{\bullet} is exact.
- 10. Let $f: A^{\bullet} \to B^{\bullet}$ be a morphism in $\mathbf{K}(\mathcal{A})$. Show that the following are equivalent.
 - (a) f factors through an exact complex.
 - (b) There exists a quasi-isomorphism $q: H^{\bullet} \to A^{\bullet}$ such that $f \circ q = 0$.
 - (c) $f \cdot \operatorname{id}_{A^{\bullet}}^{-1} = 0$ in $\mathbf{D}(\mathcal{A})$.