
MA3204 - Exercise 7

Throughout the following exercises A denotes an abelian category, and C denotes an arbitrary
category. For the exercises about localizations we will ignore set-theoretical issues.

1. Let A be an additive category, let X ∈ A, and let A• = (· · · d
−2

−−→ A−1
d−1

−−→ A0 d0−→ A1 d1−→ · · · )
be a complex in A. Define the complex

HomA(A•, X) = (· · · −◦d
1

−−−→ HomA(A1, X)
−◦d0−−−→ HomA(A0, X)

−◦d−1

−−−−→ HomA(A−1, X)
−◦d−2

−−−−→ · · · )

Show that

Zn HomA(A•, X) = HomCh(A)(A
•, X[n])

Hn HomA(A•, X) = HomK(A)(A
•, X[n])

2. Let C be a category, and let S ⊂ Mor C be a class of morphisms in C. Consider the localization
C[S−1] defined in the lecture, whose morphism spaces consists of strings of morphisms in C and
formal inverses of morphisms in S.

(a) Show that C[S−1] is a category, with identity morphisms given by the empty strings [X, ∅, X].

(b) Show that we have a functor Q : C → C[S−1] given by the identity on objects, and sending
a morphism f : X → Y to the string Q(f) = [X, f, Y ]. Furthermore, show that if s ∈ S,
then Q(s) is an isomorphism

(c) Show that (C[S−1], Q) satisfies the universal property of the localization. In other words, if
F : C → D is a functor satisfying that F (s) is an isomorphism for all s ∈ S, then show that
there exists a unique functor

F : C[S−1]→ D

satisfying F = F ◦Q.

3. Let C be a category, and let S ⊂ Mor C be a class of morphisms in C. Assume S admits a
calculus of right fractions. We defined two right fractions (s1, α1) and (s2, α2) from X to Y to be
equivalent, written (s1, α1) ∼ (s2, α2), if there exists a right fraction (s3, α3) and a commutative
diagram

X1

X X3 Y

X2

s1

α1

s3

α3

s2

α2

Show that ∼ is an equivalence relation on the class of right fractions from X to Y . We denote
the equivalence class of (s, α) by [s, α].

4. Let C be a category, and let S ⊂ Mor C be a class of morphisms in C. Assume S admits a
calculus of right fractions. Recall that a composite of two right fractions X

s1←− X1
α1−→ Y and

Y
t1←− Y1

β1−→ Z is a right fraction (s1 ◦ t′1, β1 ◦α′1) where t′1 ∈ S and where we have commutative
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square

X ′1

X1 Y1

X Y Z

t′1

α′1

s1

α1

t1

β1

obtained from axiom (RF2).

(a) Show that the equivalence class of (s1◦t′1, β1◦α′1) is independent of the choice of morphisms
t′1 and α′1 above. Let (t1, β1) ◦ (s1, α1) denote this unique class.

(b) Show that if (t1, β1) ∼ (t2, β2), then

(t1, β1) ◦ (s1, α1) = (t2, β2) ◦ (s1, α1)

(c) Show that if (s1, α1) ∼ (s2, α2), then

(t1, β1) ◦ (s1, α1) = (t1, β1) ◦ (s2, α2)

(d) Consider S−1C as defined in the lecture, whose morphisms spaces are equivalence classes of
right fractions. Show that the composition law above induces a well-defined map

◦ : HomS−1C(Y,Z)×HomS−1C(X,Y )→ HomS−1C(X,Z).

5. Let C be a category, and let S ⊂ Mor C be a class of morphisms in C. Assume S admits a
calculus of right fractions. Using the previous exercises, show that S−1C is a category, with

identity morphisms given by the equivalence classes of the right fractions X
1←− X 1−→ X.

6. Let C be a category, and let S ⊂ Mor C be a class of morphisms in C. Assume S admits a calculus
of right fractions. Show that we have an isomorphism of categories

F : S−1C → C[S−1]

given by the identity on objects, and sending a right fraction X
s←− Y ′

α−→ Y to the string
[X,α, s−, Y ].

7. Let B be an additive category, and let S ⊂ MorB be a class of morphisms in C. Assume S admits
a calculus of right fractions. Let [s1, α1] and [s2, α2] be two morphisms in HomS−1B(X,Y ). In
the lecture we explained how one can find a morphism s ∈ S and morphisms β1, β2 in B such
that [s1, α1] = [s, β1] and [s2, α2] = [s, β2]. We then defined

[s1, α1] + [s2, α2] = [s, β1 + β2].

The goal of this exercise is to show that this operation is well-defined, i.e. that if [s1, α1] = [t, β′1]
and [s2, α2] = [t, β′2], then

[s, β1 + β2] = [t, β′1 + β′2].

In the following [s, α], [s, α′], [s, β], [s, β′] are morphisms in HomS−1B(X,Y )

(a) Show that [s, α] = [s, α′] if and only if there exists some t ∈ S such that α ◦ t = α′ ◦ t and
s ◦ t ∈ S.

(b) Show that if [s, α] = [s, α′] and [s, β] = [s, β′], then

[s, α+ β] = [s, α′ + β′].

(c) Now assume s, s1, s2, t and α1, α2, β1, β2, β
′
1, β
′
2 are as above. Applying (RF2) to X1

s−→
X

t←− X ′1, show that we can find s̃ ∈ S and morphisms γ1, γ2, γ
′
1, γ
′
2 such that

[s, β1] = [s̃, γ1] [s, β2] = [s̃, γ2] [s, β1 + β2] = [s̃, γ1 + γ2]

[t, β′1] = [s̃, γ′1] [t, β′2] = [s̃, γ′2] [t, β′1 + β′2] = [s̃, γ′1 + γ′2].
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(d) Using part (b) and (c), conclude that [s, β1 + β2] = [t, β′1 + β′2].

8. Let B be an additive category, and let S ⊂ MorB be a class of morphisms in C. Assume S admits
a calculus of right fractions. The goal of this exercise is to fill in the remaining details of the
proof that S−1B is preadditive.

(a) Show that the operation + defined in the previous exercise makes HomS−1B(X,Y ) into an
abelian group with zero element [1X , 0].

(b) Show that composition in S−1B is bilinear with respect to +.

9. Let X• ∈ K(A) be a complex. Show that X• ∼= 0 in D(A) if and only if X• is exact.

10. Let f : A• → B• be a morphism in K(A). Show that the following are equivalent.

(a) f factors through an exact complex.

(b) There exists a quasi-isomorphism q : H• → A• such that f ◦ q = 0.

(c) f · id−1A• = 0 in D(A).
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